Networking plugin for pod networking in Kubernetes using Elastic Network Interfaces on AWS.
Download the latest version of the yaml and apply it to the cluster.
kubectl apply -f aws-k8s-cni.yaml
Launch kubelet with network plugins set to cni (--network-plugin=cni
), the cni directories configured (--cni-config-dir
and --cni-bin-dir
) and node ip set to the primary IPv4 address of the primary ENI for the instance
(--node-ip=$(curl http://169.254.169.254/latest/meta-data/local-ipv4)
).
It is also recommended that you set --max-pods
equal to (the number of ENIs for the instance type ×
(the number of IPs per ENI - 1)) + 2; for details, see vpc_ip_resource_limit.go. Setting --max-pods
will prevent
scheduling that exceeds the IP address resources available to the kubelet.
The default manifest expects --cni-conf-dir=/etc/cni/net.d
and --cni-bin-dir=/opt/cni/bin
.
Alternatively there is also a Helm chart: eks/aws-vpc-cni
See here for required IAM policies.
make
defaults to make build-linux
that builds the Linux binaries.unit-test
, format
,lint
and vet
provide ways to run the respective tests/tools and should be run before submitting a PR.make docker
will create a docker container using docker buildx
that contains the finished binaries, with a tag of amazon/amazon-k8s-cni:latest
make docker-unit-tests
uses a docker container to run all unit tests..go-version
unless a different GOLANG_IMAGE
tag is passed in.There are 2 components:
ipamd
, a long-running node-Local IP Address Management (IPAM) daemon, is responsible for:
The details can be found in Proposal: CNI plugin for Kubernetes networking over AWS VPC.
For help, please consider the following venues (in order):
#aws-vpc-cni
channel in the Kubernetes Slack community.For all Kubernetes releases, we recommend installing the latest VPC CNI release. The following table denotes our oldest recommended VPC CNI version for each actively supported Kubernetes release.
Kubernetes Release | 1.31 | 1.30 | 1.29 | 1.28 | 1.27 | 1.26 | 1.25 | 1.24 |
---|---|---|---|---|---|---|---|---|
VPC CNI Version | v1.16.4+ | v1.16.0+ | v1.14.1+ | v1.13.4+ | v1.12.5+ | v1.12.0+ | v1.11.4+ | v1.9.3+ |
Upgrading (or downgrading) the VPC CNI version should result in no downtime. Existing pods should not be affected and will not lose network connectivity.
New pods will be in pending state until the VPC CNI is fully initialized and can assign pod IP addresses. In v1.12.0+, VPC CNI state is
restored via an on-disk file: /var/run/aws-node/ipam.json
. In lower versions, state is restored via calls to container runtime.
When a worker node first joins the cluster, there is only 1 ENI along with all of the addresses on the ENI. Without any configuration, ipamd always tries to keep one extra ENI.
When the number of pods running on the node exceeds the number of addresses on a single ENI, the CNI backend starts allocating a new ENI using the following allocation scheme:
For example, a m4.4xlarge node can have up to 8 ENIs, and each ENI can have up to 30 IP addresses. See Elastic Network Interfaces documentation for details.
For a detailed explanation, see WARM_ENI_TARGET
, WARM_IP_TARGET
and MINIMUM_IP_TARGET
.
VPC CNI makes use of privileged mode (privileged: true
) in the manifest for its aws-vpc-cni-init
and aws-eks-nodeagent
containers. aws-vpc-cni-init
container requires elevated privilege to set the networking kernel parameters while aws-eks-nodeagent
container requires these privileges for attaching BPF probes to enforce network policy
In Kubernetes, by default, all pod-to-pod communication is allowed. Communication can be restricted with Kubernetes NetworkPolicy objects.
VPC CNI versions v1.14, and greater support Kubernetes Network Policies.. Network Policies specify how pods can communicate over the network, at the IP address or port level. The VPC CNI implements the Kubernetes NetworkPolicy API. Network policies generally include a pod selector, and Ingress/Egress rules.
For EKS clusters, review Configure your cluster for Kubernetes network policies in the Amazon EKS User Guide.
The AWS VPC CNI implementation of network policies may be enabled in self-managed clusters. This requires the VPC CNI agent, the Network Policy Controller, and Network Policy Node Agent.
Review the Network Policy FAQ for more information.
If the VPC CNI is installed as an Amazon EKS add-ons (also known as a managed add-on), configure it using AWS APIs as described in the EKS User Guide.
If the VPC CNI is installed with a Helm Chart, the ConfigMap is installed in your cluster. Review the Helm Chart information.
Otherwise, the VPC CNI may be configured with a ConfigMap, as shown below:
apiVersion: v1
kind: ConfigMap
metadata:
name: amazon-vpc-cni
namespace: kube-system
data:
enable-network-policy-controller: "true"
enable-network-policy-controller
AWS publishes a Helm chart to install the VPC CNI. Review how to install the helm chart, and the configuration parameters for the chart.
The Amazon VPC CNI plugin for Kubernetes supports a number of configuration options, which are set through environment variables. The following environment variables are available, and all of them are optional.
AWS_MANAGE_ENIS_NON_SCHEDULABLE
(v1.12.6+)Type: Boolean as a String
Default: false
Specifies whether IPAMD should allocate or deallocate ENIs on a non-schedulable node.
AWS_VPC_CNI_NODE_PORT_SUPPORT
Type: Boolean as a String
Default: true
Specifies whether NodePort
services are enabled on a worker node’s primary network interface. This requires additional
iptables
rules, and the kernel’s reverse path filter on the primary interface is set to loose
.
AWS_VPC_K8S_CNI_CUSTOM_NETWORK_CFG
Type: Boolean as a String
Default: false
Specifies that your pods may use subnets and security groups that are independent of your worker node’s VPC configuration.
By default, pods share the same subnet and security groups as the worker node’s primary interface. Setting this variable
to true
causes ipamd
to use the security groups and VPC subnet in a worker node’s ENIConfig
for elastic network interface
allocation. You must create an ENIConfig
custom resource for each subnet that your pods will reside in, and then annotate or
label each worker node to use a specific ENIConfig
. Multiple worker nodes can be annotated or labelled with the same ENIConfig
, but
each Worker node can be annotated with a single ENIConfig
at a time. Further, the subnet in the ENIConfig
must belong to the
same Availability Zone that the worker node resides in.
For more information, see CNI Custom Networking
in the Amazon EKS User Guide.
ENI_CONFIG_ANNOTATION_DEF
Type: String
Default: k8s.amazonaws.com/eniConfig
Specifies node annotation key name. This should be used when AWS_VPC_K8S_CNI_CUSTOM_NETWORK_CFG=true
. Annotation value
will be used to set ENIConfig
name. Note that annotations take precedence over labels.
ENI_CONFIG_LABEL_DEF
Type: String
Default: k8s.amazonaws.com/eniConfig
Specifies node label key name. This should be used when AWS_VPC_K8S_CNI_CUSTOM_NETWORK_CFG=true
. Label value will be used
to set ENIConfig
name. Note that annotations will take precedence over labels. To use labels, ensure there is no annotation with key
k8s.amazonaws.com/eniConfig
or defined key (in ENI_CONFIG_ANNOTATION_DEF
) set on the node.
To select an ENIConfig
based upon availability zone set this to topology.kubernetes.io/zone
and create an
ENIConfig
custom resource for each availability zone (e.g. us-east-1a
). Note that tag failure-domain.beta.kubernetes.io/zone
is deprecated and replaced with the tag topology.kubernetes.io/zone
.
HOST_CNI_BIN_PATH
Type: String
Default: /host/opt/cni/bin
Specifies the location to install CNI binaries. Note that the aws-node
daemonset mounts /opt/cni/bin
to /host/opt/cni/bin
. The value you choose must be a location that the aws-node
pod can write to.
HOST_CNI_CONFDIR_PATH
Type: String
Default: /host/etc/cni/net.d
Specifies the location to install the VPC CNI conflist. Note that the aws-node
daemonset mounts /etc/cni/net.d
to /host/etc/cni/net.d
. The value you choose must be a location that the aws-node
pod can write to.
AWS_VPC_ENI_MTU
(v1.6.0+)Type: Integer as a String
Default: 9001
Used to configure the MTU size for attached ENIs. The valid range for IPv4 is from 576
to 9001
, while the valid range for IPv6 is from 1280
to 9001
.
AWS_VPC_K8S_CNI_EXTERNALSNAT
Type: Boolean as a String
Default: false
Specifies whether an external NAT gateway should be used to provide SNAT of secondary ENI IP addresses. If set to true
, the
SNAT iptables
rule and off-VPC IP rule are not applied, and these rules are removed if they have already been applied.
Disable SNAT if you need to allow inbound communication to your pods from external VPNs, direct connections, and external VPCs,
and your pods do not need to access the Internet directly via an Internet Gateway. However, your nodes must be running in a
private subnet and connected to the internet through an AWS NAT Gateway or another external NAT device.
AWS_VPC_K8S_CNI_RANDOMIZESNAT
Type: String
Default: prng
Valid Values: hashrandom
, prng
, none
Specifies whether the SNAT iptables
rule should randomize the outgoing ports for connections. This setting takes effect when
AWS_VPC_K8S_CNI_EXTERNALSNAT=false
, which is the default setting. The default setting for AWS_VPC_K8S_CNI_RANDOMIZESNAT
is
prng
, meaning that --random-fully
will be added to the SNAT iptables
rule. For old versions of iptables
that do not
support --random-fully
this option will fall back to --random
. To disable random port allocation, if you for example
rely on sequential port allocation for outgoing connections set it to none
.
Note: Any options other than none
will cause outbound connections to be assigned a source port that is not necessarily
part of the ephemeral port range set at the OS level (/proc/sys/net/ipv4/ip_local_port_range
). This is relevant for any
customers that might have NACLs restricting traffic based on the port range found in ip_local_port_range
.
AWS_VPC_K8S_CNI_EXCLUDE_SNAT_CIDRS
(v1.6.0+)Type: String
Default: empty
Specify a comma-separated list of IPv4 CIDRs to exclude from SNAT. For every item in the list an iptables
rule and off-VPC
IP rule will be applied. If an item is not a valid ipv4 range it will be skipped. This should be used when AWS_VPC_K8S_CNI_EXTERNALSNAT=false
.
POD_MTU
(v1.16.4+)Type: Integer as a String
Note: If unset, the default value is derived from AWS_VPC_ENI_MTU
, which defaults to 9001
.
Default: 9001
Used to configure the MTU size for pod virtual interfaces. The valid range for IPv4 is from 576
to 9001
, while the valid range for IPv6 is from 1280
to 9001
.
WARM_ENI_TARGET
Type: Integer as a String
Default: 1
Specifies the number of free elastic network interfaces (and all of their available IP addresses) that the ipamd
daemon should
attempt to keep available for pod assignment on the node. By default, ipamd
attempts to keep 1 elastic network interface and all
of its IP addresses available for pod assignment. The number of IP addresses per network interface varies by instance type. For more
information, see IP Addresses Per Network Interface Per Instance Type
in the Amazon EC2 User Guide for Linux Instances.
For example, an m4.4xlarge
launches with 1 network interface and 30 IP addresses. If 5 pods are placed on the node and 5 free IP
addresses are removed from the IP address warm pool, then ipamd
attempts to allocate more interfaces until WARM_ENI_TARGET
free
interfaces are available on the node.
NOTE! If WARM_IP_TARGET
is set, then this environment variable is ignored and the WARM_IP_TARGET
behavior is used instead.
WARM_IP_TARGET
Type: Integer
Default: None
Specifies the number of free IP addresses that the ipamd
daemon should attempt to keep available for pod assignment on the node. Setting this to a non-positive value is the same as setting this to 0 or not setting the variable.
With ENABLE_PREFIX_DELEGATION
set to true
then ipamd
daemon will check if the existing (/28) prefixes are enough to maintain the
WARM_IP_TARGET
if it is not sufficient then more prefixes will be attached.
For example,
WARM_IP_TARGET
is set to 5, then ipamd
attempts to keep 5 free IP addresses available at all times. If the
elastic network interfaces on the node are unable to provide these free addresses, ipamd
attempts to allocate more interfaces
until WARM_IP_TARGET
free IP addresses are available.ENABLE_PREFIX_DELEGATION
set to true
and WARM_IP_TARGET
is 16. Initially, 1 (/28) prefix is sufficient but once a single pod is assigned IP then
remaining free IPs are 15 hence IPAMD will allocate 1 more prefix to achieve 16 WARM_IP_TARGET
NOTE! Avoid this setting for large clusters, or if the cluster has high pod churn. Setting it will cause additional calls to the
EC2 API and that might cause throttling of the requests. It is strongly suggested to set MINIMUM_IP_TARGET
when using WARM_IP_TARGET
.
If both WARM_IP_TARGET
and MINIMUM_IP_TARGET
are set, ipamd
will attempt to meet both constraints.
This environment variable overrides WARM_ENI_TARGET
behavior. For a detailed explanation, see
WARM_ENI_TARGET
, WARM_IP_TARGET
and MINIMUM_IP_TARGET
.
If ENABLE_PREFIX_DELEGATION
set to true
and WARM_IP_TARGET
overrides WARM_PREFIX_TARGET
behavior. For a detailed explanation, see
WARM_PREFIX_TARGET
, WARM_IP_TARGET
and MINIMUM_IP_TARGET
.
MINIMUM_IP_TARGET
(v1.6.0+)Type: Integer
Default: None
Specifies the number of total IP addresses that the ipamd
daemon should attempt to allocate for pod assignment on the node.
MINIMUM_IP_TARGET
behaves identically to WARM_IP_TARGET
except that instead of setting a target number of free IP
addresses to keep available at all times, it sets a target number for a floor on how many total IP addresses are allocated. Setting to a
non-positive value is same as setting this to 0 or not setting the variable.
MINIMUM_IP_TARGET
is for pre-scaling, WARM_IP_TARGET
is for dynamic scaling. For example, suppose a cluster has an
expected pod density of approximately 30 pods per node. If WARM_IP_TARGET
is set to 30 to ensure there are enough IPs
allocated up front by the CNI, then 30 pods are deployed to the node, the CNI will allocate an additional 30 IPs, for
a total of 60, accelerating IP exhaustion in the relevant subnets. If instead MINIMUM_IP_TARGET
is set to 30 and
WARM_IP_TARGET
to 2, after the 30 pods are deployed the CNI would allocate an additional 2 IPs. This still provides
elasticity, but uses roughly half as many IPs as using WARM_IP_TARGET alone (32 IPs vs 60 IPs).
This also improves the reliability of the EKS cluster by reducing the number of calls necessary to allocate or deallocate private IPs, which may be throttled, especially at scaling-related times.
NOTE!
MINIMUM_IP_TARGET
is set, WARM_ENI_TARGET
will be ignored. Please utilize WARM_IP_TARGET
instead.MINIMUM_IP_TARGET
is set and WARM_IP_TARGET
is not set, WARM_IP_TARGET
is assumed to be 0, which leads to the number of IPs attached to the node will be the value of MINIMUM_IP_TARGET
. This configuration will prevent future ENIs/IPs from being allocated. It is strongly recommended that WARM_IP_TARGET
should be set greater than 0 when MINIMUM_IP_TARGET
is set.MAX_ENI
Type: Integer
Default: None
Specifies the maximum number of ENIs that will be attached to the node. When MAX_ENI
is unset or 0 (or lower), the setting
is not used, and the maximum number of ENIs is always equal to the maximum number for the instance type in question. Even when
MAX_ENI
is a positive number, it is limited by the maximum number for the instance type.
AWS_VPC_K8S_CNI_LOGLEVEL
Type: String
Default: DEBUG
Valid Values: DEBUG
, INFO
, WARN
, ERROR
, FATAL
. (Not case sensitive)
Specifies the log level for ipamd
and cni-metric-helper
.
AWS_VPC_K8S_CNI_LOG_FILE
Type: String
Default: /host/var/log/aws-routed-eni/ipamd.log
Valid Values: stdout
, stderr
, or a file path
Specifies where to write the logging output of ipamd
: stdout
, stderr
, or a file path other than the default (/var/log/aws-routed-eni/ipamd.log
).
Note: /host/var/log/...
is the container file-system path, which maps to /var/log/...
on the node.
Note: The IPAMD process runs within the aws-node
pod, so writing to stdout
or stderr
will write to aws-node
pod logs.
AWS_VPC_K8S_PLUGIN_LOG_FILE
Type: String
Default: /var/log/aws-routed-eni/plugin.log
Valid Values: stderr
or a file path. Note that setting to the empty string is an alias for stderr
, and this comes from upstream kubernetes best practices.
Specifies where to write the logging output for aws-cni
plugin: stderr
or a file path other than the default (/var/log/aws-routed-eni/plugin.log
).
Note: stdout
cannot be supported for plugin log. Please refer to #1248 for more details.
Note: In EKS 1.24+, the CNI plugin is exec’ed by the container runtime, so stderr
is for the container-runtime process, NOT the aws-node
pod. In older versions, the CNI plugin was exec’ed by kubelet, so stderr
is for the kubelet process.
Note: If chaining an external plugin (i.e. Cilium) that does not provide a pluginLogFile
in its config file, the CNI plugin will by default write to os.Stderr
.
AWS_VPC_K8S_PLUGIN_LOG_LEVEL
Type: String
Default: DEBUG
Valid Values: DEBUG
, INFO
, WARN
, ERROR
, FATAL
. (Not case sensitive)
Specifies the loglevel for aws-cni
plugin.
INTROSPECTION_BIND_ADDRESS
Type: String
Default: 127.0.0.1:61679
Specifies the bind address for the introspection endpoint.
A Unix Domain Socket can be specified with the unix:
prefix before the socket path.
DISABLE_INTROSPECTION
Type: Boolean as a String
Default: false
Specifies whether introspection endpoints are disabled on a worker node. Setting this to true
will reduce the debugging
information we can get from the node when running the aws-cni-support.sh
script.
DISABLE_METRICS
Type: Boolean as a String
Default: false
Specifies whether the prometheus metrics endpoint is disabled or not for ipamd. By default metrics are published
on :61678/metrics
.
AWS_VPC_K8S_CNI_VETHPREFIX
Type: String
Default: eni
Specifies the veth prefix used to generate the host-side veth device name for the CNI. The prefix can be at most 4 characters long. The prefixes eth
, vlan
, and lo
are reserved by the CNI plugin and cannot be specified. We recommend using prefix name not shared by any other network interfaces on the worker node instance.
ADDITIONAL_ENI_TAGS
(v1.6.0+)Type: String
Default: {}
Example values: {"tag_key": "tag_val"}
Metadata applied to ENI helps you categorize and organize your resources for billing or other purposes. Each tag consists of a custom-defined key and an optional value. Tag keys can have a maximum character length of 128 characters. Tag values can have a maximum length of 256 characters. These tags will be added to all ENIs on the host.
Important: Custom tags should not contain k8s.amazonaws.com
prefix as it is reserved. If the tag has k8s.amazonaws.com
string, tag addition will be ignored.
AWS_VPC_K8S_CNI_CONFIGURE_RPFILTER
(deprecated v1.12.1+)Type: Boolean as a String
Default: true
Specifies whether ipamd should configure rp filter for primary interface. Setting this to false
will require rp filter to be configured through init container.
NOTE! AWS_VPC_K8S_CNI_CONFIGURE_RPFILTER
has been deprecated, so setting this environment variable results in a no-op. The init container unconditionally configures the rp filter for the primary interface.
CLUSTER_NAME
Type: String
Default: ""
Specifies the cluster name to tag allocated ENIs with. See the “Cluster Name tag” section below.
CLUSTER_ENDPOINT
(v1.12.1+)Type: String
Default: ""
Specifies the cluster endpoint to use for connecting to the api-server without relying on kube-proxy. This is an optional configuration parameter that can improve the initialization time of the AWS VPC CNI.
NOTE! When setting CLUSTER_ENDPOINT, it is STRONGLY RECOMMENDED that you enable private endpoint access for your API server, otherwise VPC CNI requests can traverse the public NAT gateway and may result in additional charges.
ENABLE_POD_ENI
(v1.7.0+)Type: Boolean as a String
Default: false
To enable security groups for pods you need to have at least an EKS 1.17 eks.3 cluster.
Setting ENABLE_POD_ENI
to true
will allow IPAMD to add the vpc.amazonaws.com/has-trunk-attached
label to the node if the instance has the capacity to attach an additional ENI.
The label notifies vpc-resource-controller to attach a Trunk ENI to the instance. The label value is initially set to false
and is marked to true
by IPAMD when vpc-resource-controller attaches a Trunk ENI to the instance. However, there might be cases where the label value will remain false
if the instance doesn’t support ENI Trunking.
Once enabled the VPC resource controller will then advertise branch network interfaces as extended resources on these nodes in your cluster. Branch interface capacity is additive to existing instance type limits for secondary IP addresses and prefixes. For example, a c5.4xlarge can continue to have up to 234 secondary IP addresses or 234 /28 prefixes assigned to standard network interfaces and up to 54 branch network interfaces. Each branch network interface only receives a single primary IP address and this IP address will be allocated to pods with a security group(branch ENI pods).
Any of the WARM targets do not impact the scale of the branch ENI pods so you will have to set the WARM_{ENI/IP/PREFIX}_TARGET based on the number of non-branch ENI pods. If you are having the cluster mostly using pods with a security group consider setting WARM_IP_TARGET to a very low value instead of default WARM_ENI_TARGET or WARM_PREFIX_TARGET to reduce wastage of IPs/ENIs.
NOTE! Toggling ENABLE_POD_ENI
from true
to false
will not detach the Trunk ENI from an instance. To delete/detach the Trunk ENI from an instance, you need to recycle the instance.
POD_SECURITY_GROUP_ENFORCING_MODE
(v1.11.0+)Type: String
Default: strict
Valid Values: strict
, standard
Once ENABLE_POD_ENI
is set to true
, this value controls how the traffic of pods with the security group behaves.
strict
mode: all inbound/outbound traffic from pod with security group will be enforced by security group rules. This is the default mode if POD_SECURITY_GROUP_ENFORCING_MODE is not set.
strict
mode is supported when kube-proxy configured in iptables
mode (default with EKS). If kube-proxy is configured in ipvs
mode, please set POD_SECURITY_GROUP_ENFORCING_MODE
to standard
.standard
mode: the traffic of pod with security group behaves same as pods without a security group, except that each pod occupies a dedicated branch ENI.
NOTE!: To make new behavior be in effect after switching the mode, existing pods with security group must be recycled. Alternatively, you can restart the nodes as well.
DISABLE_TCP_EARLY_DEMUX
(v1.7.3+)Type: Boolean as a String
Default: false
If ENABLE_POD_ENI
is set to true
, for the kubelet to connect via TCP (for liveness or readiness probes)
to pods that are using per pod security groups, DISABLE_TCP_EARLY_DEMUX
should be set to true
for amazon-k8s-cni-init
the container under initcontainers
. This will increase the local TCP connection latency slightly.
Details on why this is needed can be found in this #1212 comment.
To use this setting, a Linux kernel version of at least 4.6 is needed on the worker node.
You can use the below command to enable DISABLE_TCP_EARLY_DEMUX
to true
-
kubectl patch daemonset aws-node -n kube-system -p '{"spec": {"template": {"spec": {"initContainers": [{"env":[{"name":"DISABLE_TCP_EARLY_DEMUX","value":"true"}],"name":"aws-vpc-cni-init"}]}}}}'
ENABLE_SUBNET_DISCOVERY
(v1.18.0+)Type: Boolean as a String
Default: true
Subnet discovery is enabled by default. VPC-CNI will pick the subnet with the most number of free IPs from the nodes’ VPC/AZ to create the secondary ENIs. The subnets considered are the subnet the node is created in and subnets tagged with kubernetes.io/role/cni
.
If ENABLE_SUBNET_DISCOVERY
is set to false
or if DescribeSubnets fails due to IAM permissions, all secondary ENIs will be created in the subnet the node is created in.
ENABLE_PREFIX_DELEGATION
(v1.9.0+)Type: Boolean as a String
Default: false
To enable prefix delegation on nitro instances. Setting ENABLE_PREFIX_DELEGATION
to true
will start allocating a prefix (/28 for IPv4
and /80 for IPv6) instead of a secondary IP in the ENIs subnet. The total number of prefixes and private IP addresses will be less than the
limit on private IPs allowed by your instance. Setting or resetting of ENABLE_PREFIX_DELEGATION
while pods are running or if ENIs are attached is supported and the new pods allocated will get IPs based on the mode of IPAMD but the max pods of kubelet should be updated which would need either kubelet restart or node recycle.
Setting ENABLE_PREFIX_DELEGATION to true will not increase the density of branch ENI pods. The limit on the number of branch network interfaces per instance type will remain the same. Each branch network will be allocated a primary IP and this IP will be allocated for the branch ENI pods.
Please refer to VPC CNI Feature Matrix section below for additional information around using Prefix delegation with Custom Networking and Security Groups Per Pod features.
Note: ENABLE_PREFIX_DELEGATION
needs to be set to true
when VPC CNI is configured to operate in IPv6 mode (supported in v1.10.0+). Prefix Delegation in IPv4 and IPv6 modes is supported on Nitro based Bare Metal instances as well from v1.11+. If you’re using Prefix Delegation feature on Bare Metal instances, downgrading to an earlier version of VPC CNI from v1.11+ will be disruptive and not supported.
WARM_PREFIX_TARGET
(v1.9.0+)Type: Integer
Default: None
Specifies the number of free IPv4(/28) prefixes that the ipamd
daemon should attempt to keep available for pod assignment on the node. Setting to a non-positive value is same as setting this to 0 or not setting the variable.
This environment variable works when ENABLE_PREFIX_DELEGATION
is set to true
and is overridden when WARM_IP_TARGET
and MINIMUM_IP_TARGET
are configured.
DISABLE_NETWORK_RESOURCE_PROVISIONING
(v1.9.1+)Type: Boolean as a String
Default: false
Setting DISABLE_NETWORK_RESOURCE_PROVISIONING
to true
will make IPAMD depend only on IMDS to get attached ENIs and IPs/prefixes.
ENABLE_BANDWIDTH_PLUGIN
(v1.10.0+)Type: Boolean as a String
Default: false
Setting ENABLE_BANDWIDTH_PLUGIN
to true
will update 10-aws.conflist
to include upstream bandwidth plugin as a chained plugin.
NOTE: Kubernetes Network Policy is supported in Amazon VPC CNI starting with version v1.14.0. Note that bandwidth plugin is not compatible with Amazon VPC CNI based Network policy. Network Policy agent uses TC (traffic classifier) system to enforce configured network policies for the pods. The policy enforcement will fail if bandwidth plugin is enabled due to conflict between TC configuration of bandwidth plugin and Network policy agent. We’re exploring options to support bandwidth plugin along with Network policy feature and the issue is tracked here
ANNOTATE_POD_IP
(v1.9.3+)Type: Boolean as a String
Default: false
Setting ANNOTATE_POD_IP
to true
will allow IPAMD to add an annotation vpc.amazonaws.com/pod-ips
to the pod with pod IP.
There is a known issue with kubelet taking time to update Pod.Status.PodIP
leading to calico being blocked on programming the policy. Setting ANNOTATE_POD_IP
to true
will enable AWS VPC CNI plugin to add Pod IP as an annotation to the pod spec to address this race condition.
To annotate the pod with pod IP, you will have to add patch
permission for pods resource in aws-node clusterrole. You can use the below command -
cat << EOF > append.yaml
- apiGroups:
- ""
resources:
- pods
verbs:
- patch
EOF
kubectl apply -f <(cat <(kubectl get clusterrole aws-node -o yaml) append.yaml)
NOTE: Adding patch
permissions to the aws-node
Daemonset increases the security scope for the plugin, so add this permission only after performing a proper security assessment of the tradeoffs.
ENABLE_IPv4
(v1.10.0+)Type: Boolean as a String
Default: true
VPC CNI can operate in either IPv4 or IPv6 mode. Setting ENABLE_IPv4
to true
will configure it in IPv4 mode (default mode).
Note: Dual-stack mode isn’t yet supported. So, enabling both IPv4 and IPv6 will be treated as an invalid configuration.
ENABLE_IPv6
(v1.10.0+)Type: Boolean as a String
Default: false
VPC CNI can operate in either IPv4 or IPv6 mode. Setting ENABLE_IPv6
to true
(both under aws-node
and aws-vpc-cni-init
containers in the manifest)
will configure it in IPv6 mode. IPv6 is only supported in Prefix Delegation mode, so ENABLE_PREFIX_DELEGATION
needs to be set to true
if VPC CNI is
configured to operate in IPv6 mode. Prefix delegation is only supported on nitro instances.
Note: Please make sure that the required IPv6 IAM policy is applied (Refer to IAM Policy section above). Dual stack mode isn’t yet supported. So, enabling both IPv4 and IPv6 will be treated as invalid configuration. Please refer to the VPC CNI Feature Matrix section below for additional information.
ENABLE_NFTABLES
(introduced in v1.12.1, deprecated in v1.13.2+)Type: Boolean as a String
Default: false
VPC CNI uses iptables-legacy
by default. Setting ENABLE_NFTABLES
to true
will update VPC CNI to use iptables-nft
.
Note: VPC CNI image contains iptables-legacy
and iptables-nft
. Switching between them is done via update-alternatives
. It is strongly recommended that the iptables mode matches that which is used by the base OS and kube-proxy
.
Switching modes while pods are running or rules are installed will not trigger reconciliation. It is recommended that rules are manually updated or nodes are drained and cordoned before updating. If reloading node, ensure that previous rules are not set to be persisted.
AWS_EXTERNAL_SERVICE_CIDRS
(v1.12.6+)Type: String
Default: empty
Specify a comma-separated list of IPv4 CIDRs that must be routed via main routing table. This is required for secondary ENIs to reach endpoints outside of VPC that are backed by a service.
For every item in the list, an ip rule
will be created with a priority greater than the ip rule
capturing egress traffic from the container. If an item is not a valid IPv4 CIDR, it will be skipped.
AWS_EC2_ENDPOINT
(v1.13.0+)Type: String
Default: empty
Specify the EC2 endpoint to use. This is useful if you are using a custom endpoint for EC2. For example, if you are using a proxy for EC2, you can set this to the proxy endpoint. Any kind of URL or IP address is valid such as https://localhost:8080
or http://ec2.us-west-2.customaws.com
. If this is not set, the default EC2 endpoint will be used.
DISABLE_LEAKED_ENI_CLEANUP
(v1.13.0+)Type: Boolean as a String
Default: false
On IPv4 clusters, IPAMD schedules an hourly background task per node that cleans up leaked ENIs. Setting this environment variable to true
disables that job. The primary motivation to disable this task is to decrease the amount of EC2 API calls made from each node.
Note that disabling this task should be considered carefully, as it requires users to manually cleanup ENIs leaked in their account. See #1223 for a related discussion.
ENABLE_V6_EGRESS
(v1.13.0+)Type: Boolean as a String
Default: false
Specifies whether PODs in an IPv4 cluster support IPv6 egress. If env is set to true
, range fd00::ac:00/118
is reserved for IPv6 egress.
This environment variable must be set for both the aws-vpc-cni-init
and aws-node
containers in order for this feature to work properly. This feature also requires that the node has an IPv6 address assigned to its primary ENI, as this address is used for SNAT to IPv6 endpoints outside of the cluster. If the configuration prerequisites are not met, the egress-cni
plugin is not enabled and an error log is printed in the aws-node
container.
Note that enabling/disabling this feature only affects whether newly created pods have an IPv6 interface created. Therefore, it is recommended that you reboot existing nodes after enabling/disabling this feature.
The value set in POD_MTU
/ AWS_VPC_ENI_MTU
is used to configure the MTU size of egress interface.
ENABLE_V4_EGRESS
(v1.15.1+)Type: Boolean as a String
Default: true
Specifies whether PODs in an IPv6 cluster support IPv4 egress. If env is set to true
, range 169.254.172.0/22
is reserved for IPv4 egress. When enabled, traffic egressing an IPv6 pod destined to an IPv4 endpoint will be SNAT’ed via the node IPv4 address.
Note that enabling/disabling this feature only affects whether newly created pods have an IPv4 interface created. Therefore, it is recommended that you reboot existing nodes after enabling/disabling this feature.
The value set in POD_MTU
/ AWS_VPC_ENI_MTU
is used to configure the MTU size of egress interface.
IP_COOLDOWN_PERIOD
(v1.15.0+)Type: Integer as a String
Default: 30
Specifies the number of seconds an IP address is in cooldown after pod deletion. The cooldown period gives network proxies, such as kube-proxy, time to update node iptables rules when the IP was registered as a valid endpoint, such as for a service. Modify this value with caution, as kube-proxy update time scales with the number of nodes and services.
Note: 0 is a supported value, however it is highly discouraged. Note: Higher cooldown periods may lead to a higher number of EC2 API calls as IPs are in cooldown cache.
DISABLE_POD_V6
(v1.15.0+)Type: Boolean as a String
Default: false
When DISABLE_POD_V6
is set, the tuning plugin is chained and configured to disable IPv6 networking in each newly created pod network namespace. Set this variable when you have an IPv4 cluster and containerized applications that cannot tolerate IPv6 being enabled.
Container runtimes such as containerd
will enable IPv6 in newly created container network namespaces regardless of host settings.
Note that if you set this while using Multus, you must ensure that any chained plugins do not depend on IPv6 networking. You must also ensure that chained plugins do not also modify these sysctls.
NETWORK_POLICY_ENFORCING_MODE
(v1.17.1+)Type: String
Default: standard
Network Policy agent now supports two modes for Network Policy enforcement - Strict and Standard. By default, the Amazon VPC CNI plugin for Kubernetes configures network policies for pods in parallel with the pod provisioning. In the standard
mode, until all of the policies are configured for the new pod, containers in the new pod will start with a default allow policy. A default allow policy means that all ingress and egress traffic is allowed to and from the new pods. However, in the strict
mode, a new pod will start with a default deny policy and all Egress and Ingress connections will be blocked till Network Policies are configured. In Strict Mode, you must have a network policy defined for every pod in your cluster. Host Networking pods are exempted from this requirement.
IP Mode | Secondary IP Mode | Prefix Delegation | Security Groups Per Pod | WARM & MIN IP/Prefix Targets | External SNAT | Network Policies |
---|---|---|---|---|---|---|
IPv4 |
Yes | Yes | Yes | Yes | Yes | Yes |
IPv6 |
No | Yes | No | No | No | Yes |
This plugin interacts with the following tags on ENIs:
cluster.k8s.amazonaws.com/name
kubernetes.io/role/cni
node.k8s.amazonaws.com/instance_id
node.k8s.amazonaws.com/no_manage
The tag cluster.k8s.amazonaws.com/name
will be set to the cluster name of the
aws-node daemonset which created the ENI.
The tag kubernetes.io/role/cni
is read by the aws-node daemonset to determine
if a secondary subnet can be used for creating secondary ENIs.
This tag is not set by the cni plugin itself, but rather must be set by a user to indicate that a subnet can be used for secondary ENIs. Secondary subnets to be used must have this tag. The primary subnet (node’s subnet) is not required to be tagged.
The tag node.k8s.amazonaws.com/instance_id
will be set to the instance ID of
the aws-node instance that allocated this ENI.
The tag node.k8s.amazonaws.com/no_manage
is read by the aws-node daemonset to
determine whether an ENI attached to the machine should not be configured or
used for private IPs.
This tag is not set by the cni plugin itself, but rather may be set by a user to indicate that an ENI is intended for host networking pods, or for some other process unrelated to Kubernetes.
Note: Attaching an ENI with the no_manage
tag will result in an incorrect
value for the Kubelet’s --max-pods
configuration option. Consider also
updating the MAX_ENI
and --max-pods
configuration options on this plugin
and the kubelet respectively if you are making use of this tag.
For VPC CNI >=v1.12.0, IPAMD have switched to use an on-disk file /var/run/aws-node/ipam.json
to track IP allocations, thus became container runtime agnostic and no longer requires access to Container Runtime Interface(CRI) socket.
cri.hostPath.path
. If you need to install a VPC CNI <v1.12.0 with helm chart, a Helm chart version that <v1.2.0 should be used.For VPC CNI <v1.12.0, IPAMD still depends on CRI to track IP allocations using pod sandboxes information upon its starting.
/var/run/cri.sock
and hostPath should be pointed to CRI used by kubelet, such as /var/run/containerd/containerd.sock
for containerd.--set cri.hostPath.path=/var/run/containerd/containerd.sock
can set above for you.L-IPAMD
(aws-node daemonSet) running on every worker node requires access to the Kubernetes API server. If it can not reach
the Kubernetes API server, ipamd will exit and CNI will not be able to get any IP address for Pods. Here is a way to confirm if
aws-node
has access to the Kubernetes API server.
# find out Kubernetes service IP, e.g. 10.0.0.1
kubectl get svc Kubernetes
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.0.0.1 <none> 443/TCP 29d
# ssh into worker node, check if worker node can reach API server
telnet 10.0.0.1 443
Trying 10.0.0.1...
Connected to 10.0.0.1.
Escape character is '^]'. <-------- Kubernetes API server is reachable
If you think you’ve found a potential security issue, please do not post it in the Issues. Instead, please follow the instructions here or email AWS security directly.