EKS Node Placement¶
Single AZ placement¶
AWS EKS clusters can span multiple AZs in a VPC. A Spark application whose driver and executor pods are distributed across multiple AZs can incur inter-AZ data transfer costs. To minimize or eliminate inter-AZ data transfer costs, you can configure the application to only run on the nodes within a single AZ. In this example, we use the kubernetes node selector to specify which AZ should the job run on.
Request:
cat >spark-python-in-s3-nodeselector.json << EOF
{
"name": "spark-python-in-s3-nodeselector",
"virtualClusterId": "<virtual-cluster-id>",
"executionRoleArn": "<execution-role-arn>",
"releaseLabel": "emr-6.2.0-latest",
"jobDriver": {
"sparkSubmitJobDriver": {
"entryPoint": "s3://<s3 prefix>/trip-count.py",
"sparkSubmitParameters": "--conf spark.kubernetes.node.selector.topology.kubernetes.io/zone='<availability zone>' --conf spark.driver.cores=5 --conf spark.executor.memory=20G --conf spark.driver.memory=15G --conf spark.executor.cores=6"
}
},
"configurationOverrides": {
"applicationConfiguration": [
{
"classification": "spark-defaults",
"properties": {
"spark.dynamicAllocation.enabled":"false"
}
}
],
"monitoringConfiguration": {
"cloudWatchMonitoringConfiguration": {
"logGroupName": "/emr-containers/jobs",
"logStreamNamePrefix": "demo"
},
"s3MonitoringConfiguration": {
"logUri": "s3://joblogs"
}
}
}
}
EOF
aws emr-containers start-job-run --cli-input-json file:///spark-python-in-s3-nodeselector.json
Observed Behavior:
When the job starts the driver pod and executor pods are scheduled only on those EKS worker nodes with the label topology.kubernetes.io/zone: <availability zone>
. This ensures the spark job is run within a single AZ. If there are not enough resources within the specified AZ, the pods will be in the pending
state until the Autoscaler(if configured) kicks in or more resources become available.
Spark on kubernetes Node selector configuration
Kubernetes Node selector reference
Configuration of interest -
--conf spark.kubernetes.node.selector.zone='<availability zone>'
zone
is a built-in label that EKS assigns to every EKS worker Node. The above config will ensure to schedule the driver and executor pod on those EKS worker nodes labeled - topology.kubernetes.io/zone: <availability zone>
.
However, user defined labels can also be assigned to EKS worker nodes and used as node selector.
Other common use cases are using node labels to force the job to run on on demand/spot, machine type, etc.
Single AZ and ec2 instance type placement¶
Multiple key value pairs for spark.kubernetes.node.selector.[labelKey] can be passed to add filter conditions for selecting the EKS worker node. If you want to schedule on EKS worker nodes in <availability zone>
and instance-type as m5.4xlarge - it is done as below
Request:
{
"name": "spark-python-in-s3-nodeselector",
"virtualClusterId": "<virtual-cluster-id>",
"executionRoleArn": "<execution-role-arn>",
"releaseLabel": "emr-6.2.0-latest",
"jobDriver": {
"sparkSubmitJobDriver": {
"entryPoint": "s3://<s3 prefix>/trip-count.py",
"sparkSubmitParameters": "--conf spark.driver.cores=5 --conf spark.kubernetes.pyspark.pythonVersion=3 --conf spark.executor.memory=20G --conf spark.driver.memory=15G --conf spark.executor.cores=6 --conf spark.sql.shuffle.partitions=1000"
}
},
"configurationOverrides": {
"applicationConfiguration": [
{
"classification": "spark-defaults",
"properties": {
"spark.dynamicAllocation.enabled":"false",
"spark.kubernetes.node.selector.topology.kubernetes.io/zone":"<availability zone>",
"spark.kubernetes.node.selector.node.kubernetes.io/instance-type":"m5.4xlarge"
}
}
],
"monitoringConfiguration": {
"cloudWatchMonitoringConfiguration": {
"logGroupName": "/emr-containers/jobs",
"logStreamNamePrefix": "demo"
},
"s3MonitoringConfiguration": {
"logUri": "s3://joblogs"
}
}
}
}
}
}
spark.kubernetes.node.selector.[labelKey] - Adds to the node selector of the driver pod and executor pods, with key labelKey and the value as the configuration's value. For example, setting spark.kubernetes.node.selector.identifier to myIdentifier will result in the driver pod and executors having a node selector with key identifier and value myIdentifier. Multiple node selector keys can be added by setting multiple configurations with this prefix.
Job submitter pod placement¶
Similar to driver and executor pods, you can configure the job submitter pod's node selectors as well using the emr-job-submitter
classification.
It is recommended for job submitter pods to have node placement on ON_DEMAND
nodes and not SPOT
nodes as the job will fail if the job submitter pod gets Spot instance interruptions.
You can also place the job submitter pod in a single AZ or use any Kubernetes labels that are applied to the nodes.
Note: The job submitter pod is also referred as the job-runner pod
StartJobRun request with ON_DEMAND node placement for job submitter pod
cat >spark-python-in-s3-nodeselector-job-submitter.json << EOF
{
"name": "spark-python-in-s3-nodeselector",
"virtualClusterId": "<virtual-cluster-id>",
"executionRoleArn": "<execution-role-arn>",
"releaseLabel": "emr-6.2.0-latest",
"jobDriver": {
"sparkSubmitJobDriver": {
"entryPoint": "s3://<s3 prefix>/trip-count.py",
"sparkSubmitParameters": "--conf spark.driver.cores=5 --conf spark.executor.memory=20G --conf spark.driver.memory=15G --conf spark.executor.cores=6"
}
},
"configurationOverrides": {
"applicationConfiguration": [
{
"classification": "spark-defaults",
"properties": {
"spark.dynamicAllocation.enabled":"false"
}
},
{
"classification": "emr-job-submitter",
"properties": {
"jobsubmitter.node.selector.eks.amazonaws.com/capacityType": "ON_DEMAND"
}
}
],
"monitoringConfiguration": {
"cloudWatchMonitoringConfiguration": {
"logGroupName": "/emr-containers/jobs",
"logStreamNamePrefix": "demo"
},
"s3MonitoringConfiguration": {
"logUri": "s3://joblogs"
}
}
}
}
EOF
aws emr-containers start-job-run --cli-input-json file:///spark-python-in-s3-nodeselector-job-submitter.json
StartJobRun request with Single AZ node placement for job submitter pod:
cat >spark-python-in-s3-nodeselector-job-submitter-az.json << EOF
{
"name": "spark-python-in-s3-nodeselector",
"virtualClusterId": "<virtual-cluster-id>",
"executionRoleArn": "<execution-role-arn>",
"releaseLabel": "emr-6.2.0-latest",
"jobDriver": {
"sparkSubmitJobDriver": {
"entryPoint": "s3://<s3 prefix>/trip-count.py",
"sparkSubmitParameters": "--conf spark.driver.cores=5 --conf spark.executor.memory=20G --conf spark.driver.memory=15G --conf spark.executor.cores=6"
}
},
"configurationOverrides": {
"applicationConfiguration": [
{
"classification": "spark-defaults",
"properties": {
"spark.dynamicAllocation.enabled":"false"
}
},
{
"classification": "emr-job-submitter",
"properties": {
"jobsubmitter.node.selector.topology.kubernetes.io/zone": "<availability zone>"
}
}
],
"monitoringConfiguration": {
"cloudWatchMonitoringConfiguration": {
"logGroupName": "/emr-containers/jobs",
"logStreamNamePrefix": "demo"
},
"s3MonitoringConfiguration": {
"logUri": "s3://joblogs"
}
}
}
}
EOF
aws emr-containers start-job-run --cli-input-json file:///spark-python-in-s3-nodeselector-job-submitter-az.json
StartJobRun request with single AZ and ec2 instance type placement for job submitter pod:
{
"name": "spark-python-in-s3-nodeselector",
"virtualClusterId": "<virtual-cluster-id>",
"executionRoleArn": "<execution-role-arn>",
"releaseLabel": "emr-6.2.0-latest",
"jobDriver": {
"sparkSubmitJobDriver": {
"entryPoint": "s3://<s3 prefix>/trip-count.py",
"sparkSubmitParameters": "--conf spark.driver.cores=5 --conf spark.kubernetes.pyspark.pythonVersion=3 --conf spark.executor.memory=20G --conf spark.driver.memory=15G --conf spark.executor.cores=6 --conf spark.sql.shuffle.partitions=1000"
}
},
"configurationOverrides": {
"applicationConfiguration": [
{
"classification": "spark-defaults",
"properties": {
"spark.dynamicAllocation.enabled":"false",
}
},
{
"classification": "emr-job-submitter",
"properties": {
"jobsubmitter.node.selector.topology.kubernetes.io/zone": "<availability zone>",
"jobsubmitter.node.selector.node.kubernetes.io/instance-type":"m5.4xlarge"
}
}
],
"monitoringConfiguration": {
"cloudWatchMonitoringConfiguration": {
"logGroupName": "/emr-containers/jobs",
"logStreamNamePrefix": "demo"
},
"s3MonitoringConfiguration": {
"logUri": "s3://joblogs"
}
}
}
}
}
}
Configurations of interest:
jobsubmitter.node.selector.[labelKey]
: Adds to the node selector of the job submitter pod, with key labelKey
and the value as the configuration's value. For example, setting jobsubmitter.node.selector.identifier
to myIdentifier
will result in the job-runner pod having a node selector with key identifier and value myIdentifier
. Multiple node selector keys can be added by setting multiple configurations with this prefix.