Class/Object

com.amazonaws.services.sagemaker.sparksdk.algorithms

KMeansSageMakerEstimator

Related Docs: object KMeansSageMakerEstimator | package algorithms

Permalink

class KMeansSageMakerEstimator extends SageMakerEstimator with KMeansParams

A SageMakerEstimator that runs a K-Means Clustering training job on Amazon SageMaker upon a call to fit() on a DataFrame and returns a SageMakerModel that can be used to transform a DataFrame using the hosted K-Means model. K-Means Clustering is useful for grouping similar examples in your dataset.

Amazon SageMaker K-Means clustering trains on RecordIO-encoded Amazon Record protobuf data. SageMaker Spark writes a DataFrame to S3 by selecting a column of Vectors named "features" and, if present, a column of Doubles named "label". These names are configurable by passing a map with entries in trainingSparkDataFormatOptions with key "labelColumnName" or "featuresColumnName", with values corresponding to the desired label and features columns.

For inference, the SageMakerModel returned by fit() by the KMeansSageMakerEstimator uses ProtobufRequestRowSerializer to serialize Rows into RecordIO-encoded Amazon Record protobuf messages for inference, by default selecting the column named "features" expected to contain a Vector of Doubles.

Inferences made against an Endpoint hosting a K-Means model contain a "closest_cluster" field and a "distance_to_cluster" field, both appended to the input DataFrame as columns of Double.

Linear Supertypes
KMeansParams, SageMakerAlgorithmParams, SageMakerEstimator, Estimator[SageMakerModel], PipelineStage, Logging, Params, Serializable, Serializable, Identifiable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. KMeansSageMakerEstimator
  2. KMeansParams
  3. SageMakerAlgorithmParams
  4. SageMakerEstimator
  5. Estimator
  6. PipelineStage
  7. Logging
  8. Params
  9. Serializable
  10. Serializable
  11. Identifiable
  12. AnyRef
  13. Any
  1. Hide All
  2. Show all
Visibility
  1. Public
  2. All

Instance Constructors

  1. new KMeansSageMakerEstimator(sagemakerRole: IAMRoleResource = IAMRoleFromConfig(), trainingInstanceType: String, trainingInstanceCount: Int, endpointInstanceType: String, endpointInitialInstanceCount: Int, requestRowSerializer: RequestRowSerializer = new ProtobufRequestRowSerializer(), responseRowDeserializer: ResponseRowDeserializer = ..., trainingInputS3DataPath: S3Resource = S3AutoCreatePath(), trainingOutputS3DataPath: S3Resource = S3AutoCreatePath(), trainingInstanceVolumeSizeInGB: Int = 1024, trainingProjectedColumns: Option[List[String]] = None, trainingChannelName: String = "train", trainingContentType: Option[String] = None, trainingS3DataDistribution: String = ..., trainingSparkDataFormat: String = "sagemaker", trainingSparkDataFormatOptions: Map[String, String] = Map(), trainingInputMode: String = TrainingInputMode.File.toString, trainingCompressionCodec: Option[String] = None, trainingMaxRuntimeInSeconds: Int = 24 * 60 * 60, trainingKmsKeyId: Option[String] = None, modelEnvironmentVariables: Map[String, String] = Map(), endpointCreationPolicy: EndpointCreationPolicy = ..., sagemakerClient: AmazonSageMaker = ..., region: Option[String] = None, s3Client: AmazonS3 = ..., stsClient: AWSSecurityTokenService = ..., modelPrependInputRowsToTransformationRows: Boolean = true, deleteStagingDataAfterTraining: Boolean = true, namePolicyFactory: NamePolicyFactory = new RandomNamePolicyFactory(), uid: String = Identifiable.randomUID("sagemaker"))

    Permalink

    sagemakerRole

    The SageMaker TrainingJob and Hosting IAM Role. Used by a SageMaker to access S3 and ECR resources. SageMaker hosted Endpoints instances launched by this Estimator run with this role.

    trainingInstanceType

    The SageMaker TrainingJob Instance Type to use

    trainingInstanceCount

    The number of instances of instanceType to run an SageMaker Training Job with

    endpointInstanceType

    The SageMaker Endpoint Confing instance type

    endpointInitialInstanceCount

    The SageMaker Endpoint Config minimum number of instances that can be used to host modelImage

    requestRowSerializer

    Serializes Spark DataFrame Rows for transformation by Models built from this Estimator.

    responseRowDeserializer

    Deserializes an Endpoint response into a series of Rows.

    trainingInputS3DataPath

    An S3 location to upload SageMaker Training Job input data to.

    trainingOutputS3DataPath

    An S3 location for SageMaker to store Training Job output data to.

    trainingInstanceVolumeSizeInGB

    The EBS volume size in gigabytes of each instance.

    trainingProjectedColumns

    The columns to project from the Dataset being fit before training. If an Optional.empty is passed then no specific projection will occur and all columns will be serialized.

    trainingChannelName

    The SageMaker Channel name to input serialized Dataset fit input to

    trainingContentType

    The MIME type of the training data.

    trainingS3DataDistribution

    The SageMaker Training Job S3 data distribution scheme.

    trainingSparkDataFormat

    The Spark Data Format name used to serialize the Dataset being fit for input to SageMaker.

    trainingSparkDataFormatOptions

    The Spark Data Format Options used during serialization of the Dataset being fit.

    trainingInputMode

    The SageMaker Training Job Channel input mode.

    trainingCompressionCodec

    The type of compression to use when serializing the Dataset being fit for input to SageMaker.

    trainingMaxRuntimeInSeconds

    A SageMaker Training Job Termination Condition MaxRuntimeInHours.

    trainingKmsKeyId

    A KMS key ID for the Output Data Source

    modelEnvironmentVariables

    The environment variables that SageMaker will set on the model container during execution.

    endpointCreationPolicy

    Defines how a SageMaker Endpoint referenced by a SageMakerModel is created.

    sagemakerClient

    Amazon SageMaker client. Used to send CreateTrainingJob, CreateModel, and CreateEndpoint requests.

    region

    The region in which to run the algorithm. If not specified, gets the region from the DefaultAwsRegionProviderChain.

    s3Client

    AmazonS3. Used to create a bucket for staging SageMaker Training Job input and/or output if either are set to S3AutoCreatePath.

    stsClient

    AmazonSTS. Used to resolve the account number when creating staging input / output buckets.

    modelPrependInputRowsToTransformationRows

    Whether the transformation result on Models built by this Estimator should also include the input Rows. If true, each output Row is formed by a concatenation of the input Row with the corresponding Row produced by SageMaker Endpoint invocation, produced by responseRowDeserializer. If false, each output Row is just taken from responseRowDeserializer.

    deleteStagingDataAfterTraining

    Whether to remove the training data on s3 after training is complete or failed.

    namePolicyFactory

    The NamePolicyFactory to use when naming SageMaker entities created during fit

    uid

    The unique identifier of this Estimator. Used to represent this stage in Spark ML pipelines.

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  4. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  5. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  6. def autoOrAboveParamValidator(lowerBound: Double, inclusive: Boolean): (String) ⇒ Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    SageMakerAlgorithmParams
  7. val centerFactor: Param[String]

    Permalink

    The factor of extra centroids to create.

    The factor of extra centroids to create. The number of initial centroids equals centerFactor * k. Must be > 0 or "auto". Default: "auto".

    Definition Classes
    KMeansParams
  8. final def clear(param: Param[_]): KMeansSageMakerEstimator.this.type

    Permalink
    Definition Classes
    Params
  9. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  10. def copy(extra: ParamMap): SageMakerEstimator

    Permalink
    Definition Classes
    SageMakerEstimator → Estimator → PipelineStage → Params
  11. def copyValues[T <: Params](to: T, extra: ParamMap): T

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  12. final def defaultCopy[T <: Params](extra: ParamMap): T

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  13. val deleteStagingDataAfterTraining: Boolean

    Permalink

    Whether to remove the training data on s3 after training is complete or failed.

    Whether to remove the training data on s3 after training is complete or failed.

    Definition Classes
    KMeansSageMakerEstimatorSageMakerEstimator
  14. val endpointCreationPolicy: EndpointCreationPolicy

    Permalink

    Defines how a SageMaker Endpoint referenced by a SageMakerModel is created.

    Defines how a SageMaker Endpoint referenced by a SageMakerModel is created.

    Definition Classes
    KMeansSageMakerEstimatorSageMakerEstimator
  15. val endpointInitialInstanceCount: Int

    Permalink

    The SageMaker Endpoint Config minimum number of instances that can be used to host modelImage

    The SageMaker Endpoint Config minimum number of instances that can be used to host modelImage

    Definition Classes
    KMeansSageMakerEstimatorSageMakerEstimator
  16. val endpointInstanceType: String

    Permalink

    The SageMaker Endpoint Confing instance type

    The SageMaker Endpoint Confing instance type

    Definition Classes
    KMeansSageMakerEstimatorSageMakerEstimator
  17. val epochs: IntParam

    Permalink

    The number of passes done over the training data.

    The number of passes done over the training data. Must be > 0. Default: 1.

    Definition Classes
    KMeansParams
  18. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  19. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  20. val evalMetrics: Param[String]

    Permalink

    Metric to be used for scoring the model.

    Metric to be used for scoring the model. String of comma separated metrics. Support metrics are "msd" and "ssd". "msd" Means Square Error, "ssd": Sum of square distance Default = "msd"

    Definition Classes
    KMeansParams
  21. def explainParam(param: Param[_]): String

    Permalink
    Definition Classes
    Params
  22. def explainParams(): String

    Permalink
    Definition Classes
    Params
  23. final def extractParamMap(): ParamMap

    Permalink
    Definition Classes
    Params
  24. final def extractParamMap(extra: ParamMap): ParamMap

    Permalink
    Definition Classes
    Params
  25. val featureDim: IntParam

    Permalink

    The dimension of the input vectors.

    The dimension of the input vectors. Must be > 0. Required.

    Definition Classes
    SageMakerAlgorithmParams
  26. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  27. def fit(dataSet: Dataset[_]): SageMakerModel

    Permalink

    Fits a SageMakerModel on dataSet by running a SageMaker training job.

    Fits a SageMakerModel on dataSet by running a SageMaker training job.

    Definition Classes
    SageMakerEstimator → Estimator
  28. def fit(dataset: Dataset[_], paramMaps: Array[ParamMap]): Seq[SageMakerModel]

    Permalink
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  29. def fit(dataset: Dataset[_], paramMap: ParamMap): SageMakerModel

    Permalink
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  30. def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): SageMakerModel

    Permalink
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" ) @varargs()
  31. final def get[T](param: Param[T]): Option[T]

    Permalink
    Definition Classes
    Params
  32. def getCenterFactor: String

    Permalink
    Definition Classes
    KMeansParams
  33. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  34. final def getDefault[T](param: Param[T]): Option[T]

    Permalink
    Definition Classes
    Params
  35. def getEpochs: Int

    Permalink
    Definition Classes
    KMeansParams
  36. def getEvalMetrics: String

    Permalink
    Definition Classes
    KMeansParams
  37. def getFeatureDim: Int

    Permalink
    Definition Classes
    SageMakerAlgorithmParams
  38. def getHalflifeTime: Int

    Permalink
    Definition Classes
    KMeansParams
  39. def getInitMethod: String

    Permalink
    Definition Classes
    KMeansParams
  40. def getK: Int

    Permalink
    Definition Classes
    KMeansParams
  41. def getLocalInitMethod: String

    Permalink
    Definition Classes
    KMeansParams
  42. def getMaxIter: Int

    Permalink
    Definition Classes
    KMeansParams
  43. def getMiniBatchSize: Int

    Permalink
    Definition Classes
    SageMakerAlgorithmParams
  44. final def getOrDefault[T](param: Param[T]): T

    Permalink
    Definition Classes
    Params
  45. def getParam(paramName: String): Param[Any]

    Permalink
    Definition Classes
    Params
  46. def getTol: Double

    Permalink
    Definition Classes
    KMeansParams
  47. def getTrialNum: String

    Permalink
    Definition Classes
    KMeansParams
  48. val halflifeTime: IntParam

    Permalink

    The weight decaying rate of each point.

    The weight decaying rate of each point. 0 means no decay at all. Must be >= 0. Default: 0.

    Definition Classes
    KMeansParams
  49. final def hasDefault[T](param: Param[T]): Boolean

    Permalink
    Definition Classes
    Params
  50. def hasParam(paramName: String): Boolean

    Permalink
    Definition Classes
    Params
  51. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  52. val hyperParameters: Map[String, String]

    Permalink

    A map from hyperParameter names to their respective values for training.

    A map from hyperParameter names to their respective values for training.

    Definition Classes
    SageMakerEstimator
  53. val initMethod: Param[String]

    Permalink

    The initialization algorithm to choose centroids.

    The initialization algorithm to choose centroids. Must be "random" or "kmeans++". Default: "random".

    Definition Classes
    KMeansParams
  54. def initializeLogIfNecessary(isInterpreter: Boolean): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  55. final def isDefined(param: Param[_]): Boolean

    Permalink
    Definition Classes
    Params
  56. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  57. final def isSet(param: Param[_]): Boolean

    Permalink
    Definition Classes
    Params
  58. def isTraceEnabled(): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  59. val k: IntParam

    Permalink

    The number of clusters to create (k).

    The number of clusters to create (k). Must be > 1.

    Definition Classes
    KMeansParams
  60. val localInitMethod: Param[String]

    Permalink

    The local initialization algorithm to choose centroids.

    The local initialization algorithm to choose centroids. Must be "random" or "kmeans++". Default: "kmeans++".

    Definition Classes
    KMeansParams
  61. def log: Logger

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  62. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  63. def logDebug(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  64. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  65. def logError(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  66. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  67. def logInfo(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  68. def logName: String

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  69. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  70. def logTrace(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  71. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  72. def logWarning(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  73. val maxIter: IntParam

    Permalink

    Maximum iterations for Lloyds EM procedure in the local kmeans used in finalized stage.

    Maximum iterations for Lloyds EM procedure in the local kmeans used in finalized stage. Must be > 0. Default: 300.

    Definition Classes
    KMeansParams
  74. val miniBatchSize: IntParam

    Permalink

    The number of examples in a mini-batch.

    The number of examples in a mini-batch. Must be > 0. Required.

    Definition Classes
    SageMakerAlgorithmParams
  75. val modelEnvironmentVariables: Map[String, String]

    Permalink

    The environment variables that SageMaker will set on the model container during execution.

    The environment variables that SageMaker will set on the model container during execution.

    Definition Classes
    KMeansSageMakerEstimatorSageMakerEstimator
  76. val modelImage: String

    Permalink

    A SageMaker Model hosting Docker image URI.

    A SageMaker Model hosting Docker image URI.

    Definition Classes
    SageMakerEstimator
  77. val modelPrependInputRowsToTransformationRows: Boolean

    Permalink

    Whether the transformation result on Models built by this Estimator should also include the input Rows.

    Whether the transformation result on Models built by this Estimator should also include the input Rows. If true, each output Row is formed by a concatenation of the input Row with the corresponding Row produced by SageMaker Endpoint invocation, produced by responseRowDeserializer. If false, each output Row is just taken from responseRowDeserializer.

    Definition Classes
    KMeansSageMakerEstimatorSageMakerEstimator
  78. val namePolicyFactory: NamePolicyFactory

    Permalink

    The NamePolicyFactory to use when naming SageMaker entities created during fit

    The NamePolicyFactory to use when naming SageMaker entities created during fit

    Definition Classes
    KMeansSageMakerEstimatorSageMakerEstimator
  79. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  80. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  81. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  82. lazy val params: Array[Param[_]]

    Permalink
    Definition Classes
    Params
  83. def parseTrueAndFalse(param: Param[String]): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    SageMakerAlgorithmParams
  84. val region: Option[String]

    Permalink

    The region in which to run the algorithm.

    The region in which to run the algorithm. If not specified, gets the region from the DefaultAwsRegionProviderChain.

  85. val requestRowSerializer: RequestRowSerializer

    Permalink

    Serializes Spark DataFrame Rows for transformation by Models built from this Estimator.

    Serializes Spark DataFrame Rows for transformation by Models built from this Estimator.

    Definition Classes
    KMeansSageMakerEstimatorSageMakerEstimator
  86. val responseRowDeserializer: ResponseRowDeserializer

    Permalink

    Deserializes an Endpoint response into a series of Rows.

    Deserializes an Endpoint response into a series of Rows.

    Definition Classes
    KMeansSageMakerEstimatorSageMakerEstimator
  87. val s3Client: AmazonS3

    Permalink

    AmazonS3.

    AmazonS3. Used to create a bucket for staging SageMaker Training Job input and/or output if either are set to S3AutoCreatePath.

    Definition Classes
    KMeansSageMakerEstimatorSageMakerEstimator
  88. val sagemakerClient: AmazonSageMaker

    Permalink

    Amazon SageMaker client.

    Amazon SageMaker client. Used to send CreateTrainingJob, CreateModel, and CreateEndpoint requests.

    Definition Classes
    KMeansSageMakerEstimatorSageMakerEstimator
  89. val sagemakerRole: IAMRoleResource

    Permalink

    The SageMaker TrainingJob and Hosting IAM Role.

    The SageMaker TrainingJob and Hosting IAM Role. Used by a SageMaker to access S3 and ECR resources. SageMaker hosted Endpoints instances launched by this Estimator run with this role.

    Definition Classes
    KMeansSageMakerEstimatorSageMakerEstimator
  90. final def set(paramPair: ParamPair[_]): KMeansSageMakerEstimator.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  91. final def set(param: String, value: Any): KMeansSageMakerEstimator.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  92. final def set[T](param: Param[T], value: T): KMeansSageMakerEstimator.this.type

    Permalink
    Definition Classes
    Params
  93. def setCenterFactor(value: Int): KMeansSageMakerEstimator.this.type

    Permalink
  94. def setCenterFactor(value: String): KMeansSageMakerEstimator.this.type

    Permalink
  95. final def setDefault(paramPairs: ParamPair[_]*): KMeansSageMakerEstimator.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  96. final def setDefault[T](param: Param[T], value: T): KMeansSageMakerEstimator.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  97. def setEpochs(value: Int): KMeansSageMakerEstimator.this.type

    Permalink
  98. def setEvalMetrics(value: String): KMeansSageMakerEstimator.this.type

    Permalink
  99. def setFeatureDim(value: Int): KMeansSageMakerEstimator.this.type

    Permalink
  100. def setHalflifeTime(value: Int): KMeansSageMakerEstimator.this.type

    Permalink
  101. def setInitMethod(value: String): KMeansSageMakerEstimator.this.type

    Permalink
  102. def setK(value: Int): KMeansSageMakerEstimator.this.type

    Permalink
  103. def setLocalInitMethod(value: String): KMeansSageMakerEstimator.this.type

    Permalink
  104. def setMaxIter(value: Int): KMeansSageMakerEstimator.this.type

    Permalink
  105. def setMiniBatchSize(value: Int): KMeansSageMakerEstimator.this.type

    Permalink
  106. def setTol(value: Double): KMeansSageMakerEstimator.this.type

    Permalink
  107. def setTrialNum(value: Int): KMeansSageMakerEstimator.this.type

    Permalink
  108. def setTrialNum(value: String): KMeansSageMakerEstimator.this.type

    Permalink
  109. val stsClient: AWSSecurityTokenService

    Permalink

    AmazonSTS.

    AmazonSTS. Used to resolve the account number when creating staging input / output buckets.

    Definition Classes
    KMeansSageMakerEstimatorSageMakerEstimator
  110. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  111. def toString(): String

    Permalink
    Definition Classes
    Identifiable → AnyRef → Any
  112. val tol: DoubleParam

    Permalink

    Tolerance for change in ssd for early stopping in local kmeans.

    Tolerance for change in ssd for early stopping in local kmeans. Must be in range [0, 1]. Default: 0.0001.

    Definition Classes
    KMeansParams
  113. val trainingChannelName: String

    Permalink

    The SageMaker Channel name to input serialized Dataset fit input to

    The SageMaker Channel name to input serialized Dataset fit input to

    Definition Classes
    KMeansSageMakerEstimatorSageMakerEstimator
  114. val trainingCompressionCodec: Option[String]

    Permalink

    The type of compression to use when serializing the Dataset being fit for input to SageMaker.

    The type of compression to use when serializing the Dataset being fit for input to SageMaker.

    Definition Classes
    KMeansSageMakerEstimatorSageMakerEstimator
  115. val trainingContentType: Option[String]

    Permalink

    The MIME type of the training data.

    The MIME type of the training data.

    Definition Classes
    KMeansSageMakerEstimatorSageMakerEstimator
  116. val trainingImage: String

    Permalink

    A SageMaker Training Job Algorithm Specification Training Image Docker image URI.

    A SageMaker Training Job Algorithm Specification Training Image Docker image URI.

    Definition Classes
    SageMakerEstimator
  117. val trainingInputMode: String

    Permalink

    The SageMaker Training Job Channel input mode.

    The SageMaker Training Job Channel input mode.

    Definition Classes
    KMeansSageMakerEstimatorSageMakerEstimator
  118. val trainingInputS3DataPath: S3Resource

    Permalink

    An S3 location to upload SageMaker Training Job input data to.

    An S3 location to upload SageMaker Training Job input data to.

    Definition Classes
    KMeansSageMakerEstimatorSageMakerEstimator
  119. val trainingInstanceCount: Int

    Permalink

    The number of instances of instanceType to run an SageMaker Training Job with

    The number of instances of instanceType to run an SageMaker Training Job with

    Definition Classes
    KMeansSageMakerEstimatorSageMakerEstimator
  120. val trainingInstanceType: String

    Permalink

    The SageMaker TrainingJob Instance Type to use

    The SageMaker TrainingJob Instance Type to use

    Definition Classes
    KMeansSageMakerEstimatorSageMakerEstimator
  121. val trainingInstanceVolumeSizeInGB: Int

    Permalink

    The EBS volume size in gigabytes of each instance.

    The EBS volume size in gigabytes of each instance.

    Definition Classes
    KMeansSageMakerEstimatorSageMakerEstimator
  122. val trainingKmsKeyId: Option[String]

    Permalink

    A KMS key ID for the Output Data Source

    A KMS key ID for the Output Data Source

    Definition Classes
    KMeansSageMakerEstimatorSageMakerEstimator
  123. val trainingMaxRuntimeInSeconds: Int

    Permalink

    A SageMaker Training Job Termination Condition MaxRuntimeInHours.

    A SageMaker Training Job Termination Condition MaxRuntimeInHours.

    Definition Classes
    KMeansSageMakerEstimatorSageMakerEstimator
  124. val trainingOutputS3DataPath: S3Resource

    Permalink

    An S3 location for SageMaker to store Training Job output data to.

    An S3 location for SageMaker to store Training Job output data to.

    Definition Classes
    KMeansSageMakerEstimatorSageMakerEstimator
  125. val trainingProjectedColumns: Option[List[String]]

    Permalink

    The columns to project from the Dataset being fit before training.

    The columns to project from the Dataset being fit before training. If an Optional.empty is passed then no specific projection will occur and all columns will be serialized.

    Definition Classes
    KMeansSageMakerEstimatorSageMakerEstimator
  126. val trainingS3DataDistribution: String

    Permalink

    The SageMaker Training Job S3 data distribution scheme.

    The SageMaker Training Job S3 data distribution scheme.

    Definition Classes
    KMeansSageMakerEstimatorSageMakerEstimator
  127. val trainingSparkDataFormat: String

    Permalink

    The Spark Data Format name used to serialize the Dataset being fit for input to SageMaker.

    The Spark Data Format name used to serialize the Dataset being fit for input to SageMaker.

    Definition Classes
    KMeansSageMakerEstimatorSageMakerEstimator
  128. val trainingSparkDataFormatOptions: Map[String, String]

    Permalink

    The Spark Data Format Options used during serialization of the Dataset being fit.

    The Spark Data Format Options used during serialization of the Dataset being fit.

    Definition Classes
    KMeansSageMakerEstimatorSageMakerEstimator
  129. def transformSchema(schema: StructType): StructType

    Permalink
    Definition Classes
    KMeansSageMakerEstimatorSageMakerEstimator → PipelineStage
  130. def transformSchema(schema: StructType, logging: Boolean): StructType

    Permalink
    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  131. val trialNum: Param[String]

    Permalink

    The number of trials of the local kmeans algorithm.

    The number of trials of the local kmeans algorithm. The output with best loss will be chosen. Must be > 0 or "auto". Default: "auto".

    Definition Classes
    KMeansParams
  132. val uid: String

    Permalink

    The unique identifier of this Estimator.

    The unique identifier of this Estimator. Used to represent this stage in Spark ML pipelines.

    Definition Classes
    KMeansSageMakerEstimatorSageMakerEstimator → Identifiable
  133. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  134. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  135. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from KMeansParams

Inherited from SageMakerAlgorithmParams

Inherited from SageMakerEstimator

Inherited from Estimator[SageMakerModel]

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

Ungrouped