Class

com.amazonaws.services.sagemaker.sparksdk.algorithms

LinearLearnerRegressor

Related Doc: package algorithms

Permalink

class LinearLearnerRegressor extends LinearLearnerSageMakerEstimator with LinearLearnerParams

A SageMakerEstimator that runs a Linear Learner training job in "regressor" mode in SageMaker and returns a SageMakerModel that can be used to transform a DataFrame using the hosted Linear Learner model. The Linear Learner Regressor is useful for predicting a real-valued label from training examples.

Amazon SageMaker Linear Learner trains on RecordIO-encoded Amazon Record protobuf data. SageMaker Spark writes a DataFrame to S3 by selecting a column of Vectors named "features" and, if present, a column of Doubles named "label". These names are configurable by passing a map with entries in trainingSparkDataFormatOptions with key "labelColumnName" or "featuresColumnName", with values corresponding to the desired label and features columns.

For inference against a hosted Endpoint, the SageMakerModel returned by fit() by Linear Learner uses ProtobufRequestRowSerializer to serialize Rows into RecordIO-encoded Amazon Record protobuf messages, by default selecting the column named "features" expected to contain a Vector of Doubles.

Inferences made against an Endpoint hosting a Linear Learner Regressor model contain a "score" field appended to the input DataFrame as a Double

Linear Supertypes
LinearLearnerSageMakerEstimator, LinearLearnerParams, SageMakerAlgorithmParams, SageMakerEstimator, Estimator[SageMakerModel], PipelineStage, Logging, Params, Serializable, Serializable, Identifiable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. LinearLearnerRegressor
  2. LinearLearnerSageMakerEstimator
  3. LinearLearnerParams
  4. SageMakerAlgorithmParams
  5. SageMakerEstimator
  6. Estimator
  7. PipelineStage
  8. Logging
  9. Params
  10. Serializable
  11. Serializable
  12. Identifiable
  13. AnyRef
  14. Any
  1. Hide All
  2. Show all
Visibility
  1. Public
  2. All

Instance Constructors

  1. new LinearLearnerRegressor(sagemakerRole: IAMRoleResource = IAMRoleFromConfig(), trainingInstanceType: String, trainingInstanceCount: Int, endpointInstanceType: String, endpointInitialInstanceCount: Int, requestRowSerializer: RequestRowSerializer = new ProtobufRequestRowSerializer(), responseRowDeserializer: ResponseRowDeserializer = ..., trainingInputS3DataPath: S3Resource = S3AutoCreatePath(), trainingOutputS3DataPath: S3Resource = S3AutoCreatePath(), trainingInstanceVolumeSizeInGB: Int = 1024, trainingProjectedColumns: Option[List[String]] = None, trainingChannelName: String = "train", trainingContentType: Option[String] = None, trainingS3DataDistribution: String = ..., trainingSparkDataFormat: String = "sagemaker", trainingSparkDataFormatOptions: Map[String, String] = Map(), trainingInputMode: String = TrainingInputMode.File.toString, trainingCompressionCodec: Option[String] = None, trainingMaxRuntimeInSeconds: Int = 24 * 60 * 60, trainingKmsKeyId: Option[String] = None, modelEnvironmentVariables: Map[String, String] = Map(), endpointCreationPolicy: EndpointCreationPolicy = ..., sagemakerClient: AmazonSageMaker = ..., region: Option[String] = None, s3Client: AmazonS3 = ..., stsClient: AWSSecurityTokenService = ..., modelPrependInputRowsToTransformationRows: Boolean = true, deleteStagingDataAfterTraining: Boolean = true, namePolicyFactory: NamePolicyFactory = new RandomNamePolicyFactory(), uid: String = Identifiable.randomUID("sagemaker"))

    Permalink

    sagemakerRole

    The SageMaker TrainingJob and Hosting IAM Role. Used by a SageMaker to access S3 and ECR resources. SageMaker hosted Endpoints instances launched by this Estimator run with this role.

    trainingInstanceType

    The SageMaker TrainingJob Instance Type to use

    trainingInstanceCount

    The number of instances of instanceType to run an SageMaker Training Job with

    endpointInstanceType

    The SageMaker Endpoint Confing instance type

    endpointInitialInstanceCount

    The SageMaker Endpoint Config minimum number of instances that can be used to host modelImage

    requestRowSerializer

    Serializes Spark DataFrame Rows for transformation by Models built from this Estimator.

    responseRowDeserializer

    Deserializes an Endpoint response into a series of Rows.

    trainingInputS3DataPath

    An S3 location to upload SageMaker Training Job input data to.

    trainingOutputS3DataPath

    An S3 location for SageMaker to store Training Job output data to.

    trainingInstanceVolumeSizeInGB

    The EBS volume size in gigabytes of each instance.

    trainingProjectedColumns

    The columns to project from the Dataset being fit before training. If an Optional.empty is passed then no specific projection will occur and all columns will be serialized.

    trainingChannelName

    The SageMaker Channel name to input serialized Dataset fit input to

    trainingContentType

    The MIME type of the training data.

    trainingS3DataDistribution

    The SageMaker Training Job S3 data distribution scheme.

    trainingSparkDataFormat

    The Spark Data Format name used to serialize the Dataset being fit for input to SageMaker.

    trainingSparkDataFormatOptions

    The Spark Data Format Options used during serialization of the Dataset being fit.

    trainingInputMode

    The SageMaker Training Job Channel input mode.

    trainingCompressionCodec

    The type of compression to use when serializing the Dataset being fit for input to SageMaker.

    trainingMaxRuntimeInSeconds

    A SageMaker Training Job Termination Condition MaxRuntimeInHours.

    trainingKmsKeyId

    A KMS key ID for the Output Data Source

    modelEnvironmentVariables

    The environment variables that SageMaker will set on the model container during execution.

    endpointCreationPolicy

    Defines how a SageMaker Endpoint referenced by a SageMakerModel is created.

    sagemakerClient

    Amazon SageMaker client. Used to send CreateTrainingJob, CreateModel, and CreateEndpoint requests.

    region

    The region in which to run the algorithm. If not specified, gets the region from the DefaultAwsRegionProviderChain.

    s3Client

    AmazonS3. Used to create a bucket for staging SageMaker Training Job input and/or output if either are set to S3AutoCreatePath.

    stsClient

    AmazonSTS. Used to resolve the account number when creating staging input / output buckets.

    modelPrependInputRowsToTransformationRows

    Whether the transformation result on Models built by this Estimator should also include the input Rows. If true, each output Row is formed by a concatenation of the input Row with the corresponding Row produced by SageMaker Endpoint invocation, produced by responseRowDeserializer. If false, each output Row is just taken from responseRowDeserializer.

    deleteStagingDataAfterTraining

    Whether to remove the training data on s3 after training is complete or failed.

    namePolicyFactory

    The NamePolicyFactory to use when naming SageMaker entities created during fit

    uid

    The unique identifier of this Estimator. Used to represent this stage in Spark ML pipelines.

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  4. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  5. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  6. def autoOrAboveParamValidator(lowerBound: Double, inclusive: Boolean): (String) ⇒ Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    SageMakerAlgorithmParams
  7. val beta1: DoubleParam

    Permalink

    Parameter specific to adam optimizer.

    Parameter specific to adam optimizer. Exponential decay rate for first moment estimates. Ignored when optimizer is not adam. Must be in range [0, 1). Default: 0.9.

    Definition Classes
    LinearLearnerParams
  8. val beta2: DoubleParam

    Permalink

    Parameter specific to adam optimizer.

    Parameter specific to adam optimizer. Exponential decay rate for second moment estimates. Ignored when optimizer is not adam. Must be in range [0, 1). Default: 0.999.

    Definition Classes
    LinearLearnerParams
  9. val biasLrMult: DoubleParam

    Permalink

    Learning rate bias multiplier.

    Learning rate bias multiplier. The actual learning rate for the bias is learning rate times bias_lr_mult. Must be > 0. Default: 10.

    Definition Classes
    LinearLearnerParams
  10. val biasWdMult: DoubleParam

    Permalink

    Weight decay parameter multiplier.

    Weight decay parameter multiplier. The actual L2 regularization weight for the bias is wd times bias_wd_mult. Must be >= 0. Default: 0.

    Definition Classes
    LinearLearnerParams
  11. final def clear(param: Param[_]): LinearLearnerRegressor.this.type

    Permalink
    Definition Classes
    Params
  12. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  13. def copy(extra: ParamMap): SageMakerEstimator

    Permalink
    Definition Classes
    SageMakerEstimator → Estimator → PipelineStage → Params
  14. def copyValues[T <: Params](to: T, extra: ParamMap): T

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  15. final def defaultCopy[T <: Params](extra: ParamMap): T

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  16. val deleteStagingDataAfterTraining: Boolean

    Permalink

    Whether to remove the training data on s3 after training is complete or failed.

    Whether to remove the training data on s3 after training is complete or failed.

    Definition Classes
    LinearLearnerRegressor → LinearLearnerSageMakerEstimator → SageMakerEstimator
  17. val endpointCreationPolicy: EndpointCreationPolicy

    Permalink

    Defines how a SageMaker Endpoint referenced by a SageMakerModel is created.

    Defines how a SageMaker Endpoint referenced by a SageMakerModel is created.

    Definition Classes
    LinearLearnerRegressor → LinearLearnerSageMakerEstimator → SageMakerEstimator
  18. val endpointInitialInstanceCount: Int

    Permalink

    The SageMaker Endpoint Config minimum number of instances that can be used to host modelImage

    The SageMaker Endpoint Config minimum number of instances that can be used to host modelImage

    Definition Classes
    LinearLearnerRegressor → LinearLearnerSageMakerEstimator → SageMakerEstimator
  19. val endpointInstanceType: String

    Permalink

    The SageMaker Endpoint Confing instance type

    The SageMaker Endpoint Confing instance type

    Definition Classes
    LinearLearnerRegressor → LinearLearnerSageMakerEstimator → SageMakerEstimator
  20. val epochs: IntParam

    Permalink

    Max number of passes over the data.

    Max number of passes over the data. Must be > 0. Default: 10.

    Definition Classes
    LinearLearnerParams
  21. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  22. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  23. def explainParam(param: Param[_]): String

    Permalink
    Definition Classes
    Params
  24. def explainParams(): String

    Permalink
    Definition Classes
    Params
  25. final def extractParamMap(): ParamMap

    Permalink
    Definition Classes
    Params
  26. final def extractParamMap(extra: ParamMap): ParamMap

    Permalink
    Definition Classes
    Params
  27. val featureDim: IntParam

    Permalink

    The dimension of the input vectors.

    The dimension of the input vectors. Must be > 0. Required.

    Definition Classes
    SageMakerAlgorithmParams
  28. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  29. def fit(dataSet: Dataset[_]): SageMakerModel

    Permalink

    Fits a SageMakerModel on dataSet by running a SageMaker training job.

    Fits a SageMakerModel on dataSet by running a SageMaker training job.

    Definition Classes
    SageMakerEstimator → Estimator
  30. def fit(dataset: Dataset[_], paramMaps: Array[ParamMap]): Seq[SageMakerModel]

    Permalink
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  31. def fit(dataset: Dataset[_], paramMap: ParamMap): SageMakerModel

    Permalink
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  32. def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): SageMakerModel

    Permalink
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" ) @varargs()
  33. final def get[T](param: Param[T]): Option[T]

    Permalink
    Definition Classes
    Params
  34. def getBeta1: Double

    Permalink
    Definition Classes
    LinearLearnerParams
  35. def getBeta2: Double

    Permalink
    Definition Classes
    LinearLearnerParams
  36. def getBiasLrMult: Double

    Permalink
    Definition Classes
    LinearLearnerParams
  37. def getBiasWdMult: Double

    Permalink
    Definition Classes
    LinearLearnerParams
  38. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  39. final def getDefault[T](param: Param[T]): Option[T]

    Permalink
    Definition Classes
    Params
  40. def getEpochs: Int

    Permalink
    Definition Classes
    LinearLearnerParams
  41. def getFeatureDim: Int

    Permalink
    Definition Classes
    SageMakerAlgorithmParams
  42. def getInitBias: Double

    Permalink
    Definition Classes
    LinearLearnerParams
  43. def getInitMethod: String

    Permalink
    Definition Classes
    LinearLearnerParams
  44. def getInitScale: Double

    Permalink
    Definition Classes
    LinearLearnerParams
  45. def getInitSigma: Double

    Permalink
    Definition Classes
    LinearLearnerParams
  46. def getL1: Double

    Permalink
    Definition Classes
    LinearLearnerParams
  47. def getLearningRate: String

    Permalink
    Definition Classes
    LinearLearnerParams
  48. def getLoss: String

    Permalink
    Definition Classes
    LinearLearnerParams
  49. def getLrSchedulerFactor: Double

    Permalink
    Definition Classes
    LinearLearnerParams
  50. def getLrSchedulerMinimumLr: Double

    Permalink
    Definition Classes
    LinearLearnerParams
  51. def getLrSchedulerStep: Int

    Permalink
    Definition Classes
    LinearLearnerParams
  52. def getMiniBatchSize: Int

    Permalink
    Definition Classes
    SageMakerAlgorithmParams
  53. def getMomentum: Double

    Permalink
    Definition Classes
    LinearLearnerParams
  54. def getNormalizeData: Boolean

    Permalink
    Definition Classes
    LinearLearnerParams
  55. def getNormalizeLabel: Boolean

    Permalink
    Definition Classes
    LinearLearnerParams
  56. def getNumCalibrationSamples: Int

    Permalink
    Definition Classes
    LinearLearnerParams
  57. def getNumModels: String

    Permalink
    Definition Classes
    LinearLearnerParams
  58. def getNumPointForScaler: Int

    Permalink
    Definition Classes
    LinearLearnerParams
  59. def getOptimizer: String

    Permalink
    Definition Classes
    LinearLearnerParams
  60. final def getOrDefault[T](param: Param[T]): T

    Permalink
    Definition Classes
    Params
  61. def getParam(paramName: String): Param[Any]

    Permalink
    Definition Classes
    Params
  62. def getUnbiasData: Boolean

    Permalink
    Definition Classes
    LinearLearnerParams
  63. def getUnbiasLabel: Boolean

    Permalink
    Definition Classes
    LinearLearnerParams
  64. def getUseBias: Boolean

    Permalink
    Definition Classes
    LinearLearnerParams
  65. def getUseLrScheduler: Boolean

    Permalink
    Definition Classes
    LinearLearnerParams
  66. def getWd: Double

    Permalink
    Definition Classes
    LinearLearnerParams
  67. final def hasDefault[T](param: Param[T]): Boolean

    Permalink
    Definition Classes
    Params
  68. def hasParam(paramName: String): Boolean

    Permalink
    Definition Classes
    Params
  69. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  70. val hyperParameters: Map[String, String]

    Permalink

    A map from hyperParameter names to their respective values for training.

    A map from hyperParameter names to their respective values for training.

    Definition Classes
    SageMakerEstimator
  71. val initBias: DoubleParam

    Permalink

    Initial weight for bias.

    Initial weight for bias. Default: 0.

    Definition Classes
    LinearLearnerParams
  72. val initMethod: Param[String]

    Permalink

    Initialization function for the model weights.

    Initialization function for the model weights. Supported options: "uniform" and "normal". uniform: uniformly between (-scale, +scale) normal: normal with mean 0 and sigma Default: "uniform".

    Definition Classes
    LinearLearnerParams
  73. val initScale: DoubleParam

    Permalink

    Scale for init method uniform.

    Scale for init method uniform. Must be > 0. Default: 0.07.

    Definition Classes
    LinearLearnerParams
  74. val initSigma: DoubleParam

    Permalink

    Standard deviation for init method normal.

    Standard deviation for init method normal. Must be > 0. Default: 0.01.

    Definition Classes
    LinearLearnerParams
  75. def initializeLogIfNecessary(isInterpreter: Boolean): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  76. final def isDefined(param: Param[_]): Boolean

    Permalink
    Definition Classes
    Params
  77. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  78. final def isSet(param: Param[_]): Boolean

    Permalink
    Definition Classes
    Params
  79. def isTraceEnabled(): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  80. val l1: DoubleParam

    Permalink

    The L1 regularization parameter.

    The L1 regularization parameter. Use 0 for no L1 regularization. Must be >= 0. Default: 0.

    Definition Classes
    LinearLearnerParams
  81. val learningRate: Param[String]

    Permalink

    The learning rate.

    The learning rate. Must be > 0 or "auto". Default: "auto".

    Definition Classes
    LinearLearnerParams
  82. def log: Logger

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  83. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  84. def logDebug(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  85. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  86. def logError(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  87. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  88. def logInfo(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  89. def logName: String

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  90. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  91. def logTrace(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  92. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  93. def logWarning(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  94. val loss: Param[String]

    Permalink

    The loss function to apply.

    The loss function to apply. Supported options: "logistic", "squared_loss" and "auto". Default: "auto".

    Definition Classes
    LinearLearnerParams
  95. val lrSchedulerFactor: DoubleParam

    Permalink

    Parameter specific to lr_scheduler.

    Parameter specific to lr_scheduler. Ignored otherwise. Every lr_scheduler_step the learning rate will decrease by this quantity. Must be in (0, 1). Default: 0.99.

    Definition Classes
    LinearLearnerParams
  96. val lrSchedulerMinimumLr: DoubleParam

    Permalink

    Parameter specific to lr_scheduler.

    Parameter specific to lr_scheduler. Ignored otherwise. The learning rate will never decrease to a value lower than lr_scheduler_minimum_lr. Must be > 0. Default: 1e-5.

    Definition Classes
    LinearLearnerParams
  97. val lrSchedulerStep: IntParam

    Permalink

    Parameter specific to lr_scheduler.

    Parameter specific to lr_scheduler. Ignored otherwise. The number of steps between decreases of the learning rate. Must be > 0. Default: 100.

    Definition Classes
    LinearLearnerParams
  98. val miniBatchSize: IntParam

    Permalink

    The number of examples in a mini-batch.

    The number of examples in a mini-batch. Must be > 0. Required.

    Definition Classes
    SageMakerAlgorithmParams
  99. val modelEnvironmentVariables: Map[String, String]

    Permalink

    The environment variables that SageMaker will set on the model container during execution.

    The environment variables that SageMaker will set on the model container during execution.

    Definition Classes
    LinearLearnerRegressor → LinearLearnerSageMakerEstimator → SageMakerEstimator
  100. val modelImage: String

    Permalink

    A SageMaker Model hosting Docker image URI.

    A SageMaker Model hosting Docker image URI.

    Definition Classes
    SageMakerEstimator
  101. val modelPrependInputRowsToTransformationRows: Boolean

    Permalink

    Whether the transformation result on Models built by this Estimator should also include the input Rows.

    Whether the transformation result on Models built by this Estimator should also include the input Rows. If true, each output Row is formed by a concatenation of the input Row with the corresponding Row produced by SageMaker Endpoint invocation, produced by responseRowDeserializer. If false, each output Row is just taken from responseRowDeserializer.

    Definition Classes
    LinearLearnerRegressor → LinearLearnerSageMakerEstimator → SageMakerEstimator
  102. val momentum: DoubleParam

    Permalink

    Momentum parameter of sgd optimizer.

    Momentum parameter of sgd optimizer. Must be in range [0, 1). Default: 0.

    Definition Classes
    LinearLearnerParams
  103. val namePolicyFactory: NamePolicyFactory

    Permalink

    The NamePolicyFactory to use when naming SageMaker entities created during fit

    The NamePolicyFactory to use when naming SageMaker entities created during fit

    Definition Classes
    LinearLearnerRegressor → LinearLearnerSageMakerEstimator → SageMakerEstimator
  104. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  105. val normalizeData: Param[String]

    Permalink

    Whether to normalize the features before training to have std_dev of 1.

    Whether to normalize the features before training to have std_dev of 1. Default: True

    Definition Classes
    LinearLearnerParams
  106. val normalizeLabel: Param[String]

    Permalink

    Whether regression label is normalized.

    Whether regression label is normalized. Ignored in classification. Default: "auto"

    Definition Classes
    LinearLearnerParams
  107. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  108. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  109. val numCalibrationSamples: IntParam

    Permalink

    Number of samples to use from validation dataset for doing model calibration (finding the best threshold).

    Number of samples to use from validation dataset for doing model calibration (finding the best threshold). Must be > 0. Default: 10000000.

    Definition Classes
    LinearLearnerParams
  110. val numModels: Param[String]

    Permalink

    Number of models to train in parallel.

    Number of models to train in parallel. Must be > 0 or "auto". If default "auto" is selected, the number of parallel models to train will be decided by the algorithm itself. Default: "auto".

    Definition Classes
    LinearLearnerParams
  111. val numPointForScaler: IntParam

    Permalink

    Number of data points to use for calcuating the normalizing / unbiasing terms.

    Number of data points to use for calcuating the normalizing / unbiasing terms. Must be > 0. Default: 10000.

    Definition Classes
    LinearLearnerParams
  112. val optimizer: Param[String]

    Permalink

    Which optimizer is to be used.

    Which optimizer is to be used. Supported options: "sgd" and "adam". Default: "adam".

    Definition Classes
    LinearLearnerParams
  113. lazy val params: Array[Param[_]]

    Permalink
    Definition Classes
    Params
  114. def parseTrueAndFalse(param: Param[String]): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    SageMakerAlgorithmParams
  115. val region: Option[String]

    Permalink

    The region in which to run the algorithm.

    The region in which to run the algorithm. If not specified, gets the region from the DefaultAwsRegionProviderChain.

    Definition Classes
    LinearLearnerRegressor → LinearLearnerSageMakerEstimator
  116. val requestRowSerializer: RequestRowSerializer

    Permalink

    Serializes Spark DataFrame Rows for transformation by Models built from this Estimator.

    Serializes Spark DataFrame Rows for transformation by Models built from this Estimator.

    Definition Classes
    LinearLearnerRegressor → LinearLearnerSageMakerEstimator → SageMakerEstimator
  117. val responseRowDeserializer: ResponseRowDeserializer

    Permalink

    Deserializes an Endpoint response into a series of Rows.

    Deserializes an Endpoint response into a series of Rows.

    Definition Classes
    LinearLearnerRegressor → LinearLearnerSageMakerEstimator → SageMakerEstimator
  118. val s3Client: AmazonS3

    Permalink

    AmazonS3.

    AmazonS3. Used to create a bucket for staging SageMaker Training Job input and/or output if either are set to S3AutoCreatePath.

    Definition Classes
    LinearLearnerRegressor → LinearLearnerSageMakerEstimator → SageMakerEstimator
  119. val sagemakerClient: AmazonSageMaker

    Permalink

    Amazon SageMaker client.

    Amazon SageMaker client. Used to send CreateTrainingJob, CreateModel, and CreateEndpoint requests.

    Definition Classes
    LinearLearnerRegressor → LinearLearnerSageMakerEstimator → SageMakerEstimator
  120. val sagemakerRole: IAMRoleResource

    Permalink

    The SageMaker TrainingJob and Hosting IAM Role.

    The SageMaker TrainingJob and Hosting IAM Role. Used by a SageMaker to access S3 and ECR resources. SageMaker hosted Endpoints instances launched by this Estimator run with this role.

    Definition Classes
    LinearLearnerRegressor → LinearLearnerSageMakerEstimator → SageMakerEstimator
  121. final def set(paramPair: ParamPair[_]): LinearLearnerRegressor.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  122. final def set(param: String, value: Any): LinearLearnerRegressor.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  123. final def set[T](param: Param[T], value: T): LinearLearnerRegressor.this.type

    Permalink
    Definition Classes
    Params
  124. def setBeta1(value: Double): LinearLearnerRegressor.this.type

    Permalink
    Definition Classes
    LinearLearnerSageMakerEstimator
  125. def setBeta2(value: Double): LinearLearnerRegressor.this.type

    Permalink
    Definition Classes
    LinearLearnerSageMakerEstimator
  126. def setBiasLrMult(value: Double): LinearLearnerRegressor.this.type

    Permalink
    Definition Classes
    LinearLearnerSageMakerEstimator
  127. def setBiasWdMult(value: Double): LinearLearnerRegressor.this.type

    Permalink
    Definition Classes
    LinearLearnerSageMakerEstimator
  128. final def setDefault(paramPairs: ParamPair[_]*): LinearLearnerRegressor.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  129. final def setDefault[T](param: Param[T], value: T): LinearLearnerRegressor.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  130. def setEpochs(value: Int): LinearLearnerRegressor.this.type

    Permalink
    Definition Classes
    LinearLearnerSageMakerEstimator
  131. def setFeatureDim(value: Int): LinearLearnerRegressor.this.type

    Permalink
    Definition Classes
    LinearLearnerSageMakerEstimator
  132. def setInitBias(value: Double): LinearLearnerRegressor.this.type

    Permalink
    Definition Classes
    LinearLearnerSageMakerEstimator
  133. def setInitMethod(value: String): LinearLearnerRegressor.this.type

    Permalink
    Definition Classes
    LinearLearnerSageMakerEstimator
  134. def setInitScale(value: Double): LinearLearnerRegressor.this.type

    Permalink
    Definition Classes
    LinearLearnerSageMakerEstimator
  135. def setInitSigma(value: Double): LinearLearnerRegressor.this.type

    Permalink
    Definition Classes
    LinearLearnerSageMakerEstimator
  136. def setL1(value: Double): LinearLearnerRegressor.this.type

    Permalink
    Definition Classes
    LinearLearnerSageMakerEstimator
  137. def setLearningRate(value: String): LinearLearnerRegressor.this.type

    Permalink
    Definition Classes
    LinearLearnerSageMakerEstimator
  138. def setLearningRate(value: Double): LinearLearnerRegressor.this.type

    Permalink
    Definition Classes
    LinearLearnerSageMakerEstimator
  139. def setLoss(value: String): LinearLearnerRegressor.this.type

    Permalink
    Definition Classes
    LinearLearnerSageMakerEstimator
  140. def setLrSchedulerFactor(value: Double): LinearLearnerRegressor.this.type

    Permalink
    Definition Classes
    LinearLearnerSageMakerEstimator
  141. def setLrSchedulerMinimumLr(value: Double): LinearLearnerRegressor.this.type

    Permalink
    Definition Classes
    LinearLearnerSageMakerEstimator
  142. def setLrSchedulerStep(value: Int): LinearLearnerRegressor.this.type

    Permalink
    Definition Classes
    LinearLearnerSageMakerEstimator
  143. def setMiniBatchSize(value: Int): LinearLearnerRegressor.this.type

    Permalink
    Definition Classes
    LinearLearnerSageMakerEstimator
  144. def setMomentum(value: Double): LinearLearnerRegressor.this.type

    Permalink
    Definition Classes
    LinearLearnerSageMakerEstimator
  145. def setNormalizeData(value: Boolean): LinearLearnerRegressor.this.type

    Permalink
    Definition Classes
    LinearLearnerSageMakerEstimator
  146. def setNormalizeLabel(value: Boolean): LinearLearnerRegressor.this.type

    Permalink
    Definition Classes
    LinearLearnerSageMakerEstimator
  147. def setNumCalibrationSamples(value: Int): LinearLearnerRegressor.this.type

    Permalink
    Definition Classes
    LinearLearnerSageMakerEstimator
  148. def setNumModels(value: String): LinearLearnerRegressor.this.type

    Permalink
    Definition Classes
    LinearLearnerSageMakerEstimator
  149. def setNumModels(value: Int): LinearLearnerRegressor.this.type

    Permalink
    Definition Classes
    LinearLearnerSageMakerEstimator
  150. def setNumPointForScaler(value: Int): LinearLearnerRegressor.this.type

    Permalink
    Definition Classes
    LinearLearnerSageMakerEstimator
  151. def setOptimizer(value: String): LinearLearnerRegressor.this.type

    Permalink
    Definition Classes
    LinearLearnerSageMakerEstimator
  152. def setUnbiasData(value: Boolean): LinearLearnerRegressor.this.type

    Permalink
    Definition Classes
    LinearLearnerSageMakerEstimator
  153. def setUnbiasLabel(value: Boolean): LinearLearnerRegressor.this.type

    Permalink
    Definition Classes
    LinearLearnerSageMakerEstimator
  154. def setUseBias(value: Boolean): LinearLearnerRegressor.this.type

    Permalink
    Definition Classes
    LinearLearnerSageMakerEstimator
  155. def setUseLrScheduler(value: Boolean): LinearLearnerRegressor.this.type

    Permalink
    Definition Classes
    LinearLearnerSageMakerEstimator
  156. def setWd(value: Double): LinearLearnerRegressor.this.type

    Permalink
    Definition Classes
    LinearLearnerSageMakerEstimator
  157. val stsClient: AWSSecurityTokenService

    Permalink

    AmazonSTS.

    AmazonSTS. Used to resolve the account number when creating staging input / output buckets.

    Definition Classes
    LinearLearnerRegressor → LinearLearnerSageMakerEstimator → SageMakerEstimator
  158. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  159. def toString(): String

    Permalink
    Definition Classes
    Identifiable → AnyRef → Any
  160. val trainingChannelName: String

    Permalink

    The SageMaker Channel name to input serialized Dataset fit input to

    The SageMaker Channel name to input serialized Dataset fit input to

    Definition Classes
    LinearLearnerRegressor → LinearLearnerSageMakerEstimator → SageMakerEstimator
  161. val trainingCompressionCodec: Option[String]

    Permalink

    The type of compression to use when serializing the Dataset being fit for input to SageMaker.

    The type of compression to use when serializing the Dataset being fit for input to SageMaker.

    Definition Classes
    LinearLearnerRegressor → LinearLearnerSageMakerEstimator → SageMakerEstimator
  162. val trainingContentType: Option[String]

    Permalink

    The MIME type of the training data.

    The MIME type of the training data.

    Definition Classes
    LinearLearnerRegressor → LinearLearnerSageMakerEstimator → SageMakerEstimator
  163. val trainingImage: String

    Permalink

    A SageMaker Training Job Algorithm Specification Training Image Docker image URI.

    A SageMaker Training Job Algorithm Specification Training Image Docker image URI.

    Definition Classes
    SageMakerEstimator
  164. val trainingInputMode: String

    Permalink

    The SageMaker Training Job Channel input mode.

    The SageMaker Training Job Channel input mode.

    Definition Classes
    LinearLearnerRegressor → LinearLearnerSageMakerEstimator → SageMakerEstimator
  165. val trainingInputS3DataPath: S3Resource

    Permalink

    An S3 location to upload SageMaker Training Job input data to.

    An S3 location to upload SageMaker Training Job input data to.

    Definition Classes
    LinearLearnerRegressor → LinearLearnerSageMakerEstimator → SageMakerEstimator
  166. val trainingInstanceCount: Int

    Permalink

    The number of instances of instanceType to run an SageMaker Training Job with

    The number of instances of instanceType to run an SageMaker Training Job with

    Definition Classes
    LinearLearnerRegressor → LinearLearnerSageMakerEstimator → SageMakerEstimator
  167. val trainingInstanceType: String

    Permalink

    The SageMaker TrainingJob Instance Type to use

    The SageMaker TrainingJob Instance Type to use

    Definition Classes
    LinearLearnerRegressor → LinearLearnerSageMakerEstimator → SageMakerEstimator
  168. val trainingInstanceVolumeSizeInGB: Int

    Permalink

    The EBS volume size in gigabytes of each instance.

    The EBS volume size in gigabytes of each instance.

    Definition Classes
    LinearLearnerRegressor → LinearLearnerSageMakerEstimator → SageMakerEstimator
  169. val trainingKmsKeyId: Option[String]

    Permalink

    A KMS key ID for the Output Data Source

    A KMS key ID for the Output Data Source

    Definition Classes
    LinearLearnerRegressor → LinearLearnerSageMakerEstimator → SageMakerEstimator
  170. val trainingMaxRuntimeInSeconds: Int

    Permalink

    A SageMaker Training Job Termination Condition MaxRuntimeInHours.

    A SageMaker Training Job Termination Condition MaxRuntimeInHours.

    Definition Classes
    LinearLearnerRegressor → LinearLearnerSageMakerEstimator → SageMakerEstimator
  171. val trainingOutputS3DataPath: S3Resource

    Permalink

    An S3 location for SageMaker to store Training Job output data to.

    An S3 location for SageMaker to store Training Job output data to.

    Definition Classes
    LinearLearnerRegressor → LinearLearnerSageMakerEstimator → SageMakerEstimator
  172. val trainingProjectedColumns: Option[List[String]]

    Permalink

    The columns to project from the Dataset being fit before training.

    The columns to project from the Dataset being fit before training. If an Optional.empty is passed then no specific projection will occur and all columns will be serialized.

    Definition Classes
    LinearLearnerRegressor → LinearLearnerSageMakerEstimator → SageMakerEstimator
  173. val trainingS3DataDistribution: String

    Permalink

    The SageMaker Training Job S3 data distribution scheme.

    The SageMaker Training Job S3 data distribution scheme.

    Definition Classes
    LinearLearnerRegressor → LinearLearnerSageMakerEstimator → SageMakerEstimator
  174. val trainingSparkDataFormat: String

    Permalink

    The Spark Data Format name used to serialize the Dataset being fit for input to SageMaker.

    The Spark Data Format name used to serialize the Dataset being fit for input to SageMaker.

    Definition Classes
    LinearLearnerRegressor → LinearLearnerSageMakerEstimator → SageMakerEstimator
  175. val trainingSparkDataFormatOptions: Map[String, String]

    Permalink

    The Spark Data Format Options used during serialization of the Dataset being fit.

    The Spark Data Format Options used during serialization of the Dataset being fit.

    Definition Classes
    LinearLearnerRegressor → LinearLearnerSageMakerEstimator → SageMakerEstimator
  176. def transformSchema(schema: StructType): StructType

    Permalink
    Definition Classes
    LinearLearnerSageMakerEstimator → SageMakerEstimator → PipelineStage
  177. def transformSchema(schema: StructType, logging: Boolean): StructType

    Permalink
    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  178. val uid: String

    Permalink

    The unique identifier of this Estimator.

    The unique identifier of this Estimator. Used to represent this stage in Spark ML pipelines.

    Definition Classes
    LinearLearnerRegressor → LinearLearnerSageMakerEstimator → SageMakerEstimator → Identifiable
  179. val unbiasData: Param[String]

    Permalink

    Whether to unbias the features before training so that mean is 0.

    Whether to unbias the features before training so that mean is 0. By default data is unbiased if use_bias is set to true. Default: "auto"

    Definition Classes
    LinearLearnerParams
  180. val unbiasLabel: Param[String]

    Permalink

    Whether to unbias the labels before training so that mean is 0.

    Whether to unbias the labels before training so that mean is 0. Only done for regrssion if use_bias is true. Otherwise will be ignored. Default: "auto"

    Definition Classes
    LinearLearnerParams
  181. val useBias: Param[String]

    Permalink

    Whether model should include bias.

    Whether model should include bias. Default: "True".

    Definition Classes
    LinearLearnerParams
  182. val useLrScheduler: Param[String]

    Permalink

    Whether to use a scheduler for the learning rate.

    Whether to use a scheduler for the learning rate. Default: True

    Definition Classes
    LinearLearnerParams
  183. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  184. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  185. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  186. val wd: DoubleParam

    Permalink

    The L2 regularization, i.e.

    The L2 regularization, i.e. the weight decay parameter. Use 0 for no L2 regularization. Must be >= 0. Default: 0.

    Definition Classes
    LinearLearnerParams

Inherited from LinearLearnerSageMakerEstimator

Inherited from LinearLearnerParams

Inherited from SageMakerAlgorithmParams

Inherited from SageMakerEstimator

Inherited from Estimator[SageMakerModel]

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

Ungrouped