Class/Object

com.amazonaws.services.sagemaker.sparksdk.algorithms

PCASageMakerEstimator

Related Docs: object PCASageMakerEstimator | package algorithms

Permalink

class PCASageMakerEstimator extends SageMakerEstimator with PCAParams

A SageMakerEstimator that runs a PCA training job in SageMaker and returns a SageMakerModel that can be used to transform a DataFrame using the hosted PCA model. PCA, or Principal Component Analysis, is useful for reducing the dimensionality of data before training with another algorithm.

Amazon SageMaker PCA trains on RecordIO-encoded Amazon Record protobuf data. SageMaker Spark writes a DataFrame to S3 by selecting a column of Vectors named "features" and, if present, a column of Doubles named "label". These names are configurable by passing a map with entries in trainingSparkDataFormatOptions with key "labelColumnName" or "featuresColumnName", with values corresponding to the desired label and features columns.

PCASageMakerEstimator uses ProtobufRequestRowSerializer to serialize Rows into RecordIO-encoded Amazon Record protobuf messages for inference, by default selecting the column named "features" expected to contain a Vector of Doubles.

Inferences made against an Endpoint hosting a PCA model contain a "projection" field appended to the input DataFrame as a Dense Vector of Doubles.

Linear Supertypes
PCAParams, SageMakerAlgorithmParams, SageMakerEstimator, Estimator[SageMakerModel], PipelineStage, Logging, Params, Serializable, Serializable, Identifiable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. PCASageMakerEstimator
  2. PCAParams
  3. SageMakerAlgorithmParams
  4. SageMakerEstimator
  5. Estimator
  6. PipelineStage
  7. Logging
  8. Params
  9. Serializable
  10. Serializable
  11. Identifiable
  12. AnyRef
  13. Any
  1. Hide All
  2. Show all
Visibility
  1. Public
  2. All

Instance Constructors

  1. new PCASageMakerEstimator(sagemakerRole: IAMRoleResource = IAMRoleFromConfig(), trainingInstanceType: String, trainingInstanceCount: Int, endpointInstanceType: String, endpointInitialInstanceCount: Int, requestRowSerializer: RequestRowSerializer = new ProtobufRequestRowSerializer(), responseRowDeserializer: ResponseRowDeserializer = ..., trainingInputS3DataPath: S3Resource = S3AutoCreatePath(), trainingOutputS3DataPath: S3Resource = S3AutoCreatePath(), trainingInstanceVolumeSizeInGB: Int = 1024, trainingProjectedColumns: Option[List[String]] = None, trainingChannelName: String = "train", trainingContentType: Option[String] = None, trainingS3DataDistribution: String = ..., trainingSparkDataFormat: String = "sagemaker", trainingSparkDataFormatOptions: Map[String, String] = Map(), trainingInputMode: String = TrainingInputMode.File.toString, trainingCompressionCodec: Option[String] = None, trainingMaxRuntimeInSeconds: Int = 24 * 60 * 60, trainingKmsKeyId: Option[String] = None, modelEnvironmentVariables: Map[String, String] = Map(), endpointCreationPolicy: EndpointCreationPolicy = ..., sagemakerClient: AmazonSageMaker = ..., region: Option[String] = None, s3Client: AmazonS3 = ..., stsClient: AWSSecurityTokenService = ..., modelPrependInputRowsToTransformationRows: Boolean = true, deleteStagingDataAfterTraining: Boolean = true, namePolicyFactory: NamePolicyFactory = new RandomNamePolicyFactory(), uid: String = Identifiable.randomUID("sagemaker"))

    Permalink

    sagemakerRole

    The SageMaker TrainingJob and Hosting IAM Role. Used by a SageMaker to access S3 and ECR resources. SageMaker hosted Endpoints instances launched by this Estimator run with this role.

    trainingInstanceType

    The SageMaker TrainingJob Instance Type to use

    trainingInstanceCount

    The number of instances of instanceType to run an SageMaker Training Job with

    endpointInstanceType

    The SageMaker Endpoint Confing instance type

    endpointInitialInstanceCount

    The SageMaker Endpoint Config minimum number of instances that can be used to host modelImage

    requestRowSerializer

    Serializes Spark DataFrame Rows for transformation by Models built from this Estimator.

    responseRowDeserializer

    Deserializes an Endpoint response into a series of Rows.

    trainingInputS3DataPath

    An S3 location to upload SageMaker Training Job input data to.

    trainingOutputS3DataPath

    An S3 location for SageMaker to store Training Job output data to.

    trainingInstanceVolumeSizeInGB

    The EBS volume size in gigabytes of each instance.

    trainingProjectedColumns

    The columns to project from the Dataset being fit before training. If an Optional.empty is passed then no specific projection will occur and all columns will be serialized.

    trainingChannelName

    The SageMaker Channel name to input serialized Dataset fit input to

    trainingContentType

    The MIME type of the training data.

    trainingS3DataDistribution

    The SageMaker Training Job S3 data distribution scheme.

    trainingSparkDataFormat

    The Spark Data Format name used to serialize the Dataset being fit for input to SageMaker.

    trainingSparkDataFormatOptions

    The Spark Data Format Options used during serialization of the Dataset being fit.

    trainingInputMode

    The SageMaker Training Job Channel input mode.

    trainingCompressionCodec

    The type of compression to use when serializing the Dataset being fit for input to SageMaker.

    trainingMaxRuntimeInSeconds

    A SageMaker Training Job Termination Condition MaxRuntimeInHours.

    trainingKmsKeyId

    A KMS key ID for the Output Data Source

    modelEnvironmentVariables

    The environment variables that SageMaker will set on the model container during execution.

    endpointCreationPolicy

    Defines how a SageMaker Endpoint referenced by a SageMakerModel is created.

    sagemakerClient

    Amazon SageMaker client. Used to send CreateTrainingJob, CreateModel, and CreateEndpoint requests.

    region

    The region in which to run the algorithm. If not specified, gets the region from the DefaultAwsRegionProviderChain.

    s3Client

    AmazonS3. Used to create a bucket for staging SageMaker Training Job input and/or output if either are set to S3AutoCreatePath.

    stsClient

    AmazonSTS. Used to resolve the account number when creating staging input / output buckets.

    modelPrependInputRowsToTransformationRows

    Whether the transformation result on Models built by this Estimator should also include the input Rows. If true, each output Row is formed by a concatenation of the input Row with the corresponding Row produced by SageMaker Endpoint invocation, produced by responseRowDeserializer. If false, each output Row is just taken from responseRowDeserializer.

    deleteStagingDataAfterTraining

    Whether to remove the training data on s3 after training is complete or failed.

    namePolicyFactory

    The NamePolicyFactory to use when naming SageMaker entities created during fit

    uid

    The unique identifier of this Estimator. Used to represent this stage in Spark ML pipelines.

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  4. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  5. val algorithmMode: Param[String]

    Permalink

    PCA algorithm.

    PCA algorithm. Supported options: "regular", "stable", and "randomized". Default: "regular".

    Definition Classes
    PCAParams
  6. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  7. def autoOrAboveParamValidator(lowerBound: Double, inclusive: Boolean): (String) ⇒ Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    SageMakerAlgorithmParams
  8. final def clear(param: Param[_]): PCASageMakerEstimator.this.type

    Permalink
    Definition Classes
    Params
  9. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  10. def copy(extra: ParamMap): SageMakerEstimator

    Permalink
    Definition Classes
    SageMakerEstimator → Estimator → PipelineStage → Params
  11. def copyValues[T <: Params](to: T, extra: ParamMap): T

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  12. final def defaultCopy[T <: Params](extra: ParamMap): T

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  13. val deleteStagingDataAfterTraining: Boolean

    Permalink

    Whether to remove the training data on s3 after training is complete or failed.

    Whether to remove the training data on s3 after training is complete or failed.

    Definition Classes
    PCASageMakerEstimatorSageMakerEstimator
  14. val endpointCreationPolicy: EndpointCreationPolicy

    Permalink

    Defines how a SageMaker Endpoint referenced by a SageMakerModel is created.

    Defines how a SageMaker Endpoint referenced by a SageMakerModel is created.

    Definition Classes
    PCASageMakerEstimatorSageMakerEstimator
  15. val endpointInitialInstanceCount: Int

    Permalink

    The SageMaker Endpoint Config minimum number of instances that can be used to host modelImage

    The SageMaker Endpoint Config minimum number of instances that can be used to host modelImage

    Definition Classes
    PCASageMakerEstimatorSageMakerEstimator
  16. val endpointInstanceType: String

    Permalink

    The SageMaker Endpoint Confing instance type

    The SageMaker Endpoint Confing instance type

    Definition Classes
    PCASageMakerEstimatorSageMakerEstimator
  17. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  18. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  19. def explainParam(param: Param[_]): String

    Permalink
    Definition Classes
    Params
  20. def explainParams(): String

    Permalink
    Definition Classes
    Params
  21. val extraComponents: IntParam

    Permalink

    Number of extra components to compute.

    Number of extra components to compute. Must be -1 or > 0. Valid for "randomized" mode. Ignored by other modes. Initializes a random matrix for covariance computation independent from the desired num_components. As it grows larger, the solution is more accurate but the runtime and memory consumption increase linearly. Default: -1

    Definition Classes
    PCAParams
  22. final def extractParamMap(): ParamMap

    Permalink
    Definition Classes
    Params
  23. final def extractParamMap(extra: ParamMap): ParamMap

    Permalink
    Definition Classes
    Params
  24. val featureDim: IntParam

    Permalink

    The dimension of the input vectors.

    The dimension of the input vectors. Must be > 0. Required.

    Definition Classes
    SageMakerAlgorithmParams
  25. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  26. def fit(dataSet: Dataset[_]): SageMakerModel

    Permalink

    Fits a SageMakerModel on dataSet by running a SageMaker training job.

    Fits a SageMakerModel on dataSet by running a SageMaker training job.

    Definition Classes
    SageMakerEstimator → Estimator
  27. def fit(dataset: Dataset[_], paramMaps: Array[ParamMap]): Seq[SageMakerModel]

    Permalink
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  28. def fit(dataset: Dataset[_], paramMap: ParamMap): SageMakerModel

    Permalink
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  29. def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): SageMakerModel

    Permalink
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" ) @varargs()
  30. final def get[T](param: Param[T]): Option[T]

    Permalink
    Definition Classes
    Params
  31. def getAlgorithmMode: String

    Permalink
    Definition Classes
    PCAParams
  32. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  33. final def getDefault[T](param: Param[T]): Option[T]

    Permalink
    Definition Classes
    Params
  34. def getExtraComponents: Integer

    Permalink
    Definition Classes
    PCAParams
  35. def getFeatureDim: Int

    Permalink
    Definition Classes
    SageMakerAlgorithmParams
  36. def getMiniBatchSize: Int

    Permalink
    Definition Classes
    SageMakerAlgorithmParams
  37. def getNumComponents: Int

    Permalink
    Definition Classes
    PCAParams
  38. final def getOrDefault[T](param: Param[T]): T

    Permalink
    Definition Classes
    Params
  39. def getParam(paramName: String): Param[Any]

    Permalink
    Definition Classes
    Params
  40. def getSubtractMean: Boolean

    Permalink
    Definition Classes
    PCAParams
  41. final def hasDefault[T](param: Param[T]): Boolean

    Permalink
    Definition Classes
    Params
  42. def hasParam(paramName: String): Boolean

    Permalink
    Definition Classes
    Params
  43. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  44. val hyperParameters: Map[String, String]

    Permalink

    A map from hyperParameter names to their respective values for training.

    A map from hyperParameter names to their respective values for training.

    Definition Classes
    SageMakerEstimator
  45. def initializeLogIfNecessary(isInterpreter: Boolean): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  46. final def isDefined(param: Param[_]): Boolean

    Permalink
    Definition Classes
    Params
  47. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  48. final def isSet(param: Param[_]): Boolean

    Permalink
    Definition Classes
    Params
  49. def isTraceEnabled(): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  50. def log: Logger

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  51. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  52. def logDebug(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  53. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  54. def logError(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  55. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  56. def logInfo(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  57. def logName: String

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  58. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  59. def logTrace(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  60. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  61. def logWarning(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  62. val miniBatchSize: IntParam

    Permalink

    The number of examples in a mini-batch.

    The number of examples in a mini-batch. Must be > 0. Required.

    Definition Classes
    SageMakerAlgorithmParams
  63. val modelEnvironmentVariables: Map[String, String]

    Permalink

    The environment variables that SageMaker will set on the model container during execution.

    The environment variables that SageMaker will set on the model container during execution.

    Definition Classes
    PCASageMakerEstimatorSageMakerEstimator
  64. val modelImage: String

    Permalink

    A SageMaker Model hosting Docker image URI.

    A SageMaker Model hosting Docker image URI.

    Definition Classes
    SageMakerEstimator
  65. val modelPrependInputRowsToTransformationRows: Boolean

    Permalink

    Whether the transformation result on Models built by this Estimator should also include the input Rows.

    Whether the transformation result on Models built by this Estimator should also include the input Rows. If true, each output Row is formed by a concatenation of the input Row with the corresponding Row produced by SageMaker Endpoint invocation, produced by responseRowDeserializer. If false, each output Row is just taken from responseRowDeserializer.

    Definition Classes
    PCASageMakerEstimatorSageMakerEstimator
  66. val namePolicyFactory: NamePolicyFactory

    Permalink

    The NamePolicyFactory to use when naming SageMaker entities created during fit

    The NamePolicyFactory to use when naming SageMaker entities created during fit

    Definition Classes
    PCASageMakerEstimatorSageMakerEstimator
  67. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  68. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  69. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  70. val numComponents: IntParam

    Permalink

    Number of principal components.

    Number of principal components. Required.

    Definition Classes
    PCAParams
  71. lazy val params: Array[Param[_]]

    Permalink
    Definition Classes
    Params
  72. def parseTrueAndFalse(param: Param[String]): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    SageMakerAlgorithmParams
  73. val region: Option[String]

    Permalink

    The region in which to run the algorithm.

    The region in which to run the algorithm. If not specified, gets the region from the DefaultAwsRegionProviderChain.

  74. val requestRowSerializer: RequestRowSerializer

    Permalink

    Serializes Spark DataFrame Rows for transformation by Models built from this Estimator.

    Serializes Spark DataFrame Rows for transformation by Models built from this Estimator.

    Definition Classes
    PCASageMakerEstimatorSageMakerEstimator
  75. val responseRowDeserializer: ResponseRowDeserializer

    Permalink

    Deserializes an Endpoint response into a series of Rows.

    Deserializes an Endpoint response into a series of Rows.

    Definition Classes
    PCASageMakerEstimatorSageMakerEstimator
  76. val s3Client: AmazonS3

    Permalink

    AmazonS3.

    AmazonS3. Used to create a bucket for staging SageMaker Training Job input and/or output if either are set to S3AutoCreatePath.

    Definition Classes
    PCASageMakerEstimatorSageMakerEstimator
  77. val sagemakerClient: AmazonSageMaker

    Permalink

    Amazon SageMaker client.

    Amazon SageMaker client. Used to send CreateTrainingJob, CreateModel, and CreateEndpoint requests.

    Definition Classes
    PCASageMakerEstimatorSageMakerEstimator
  78. val sagemakerRole: IAMRoleResource

    Permalink

    The SageMaker TrainingJob and Hosting IAM Role.

    The SageMaker TrainingJob and Hosting IAM Role. Used by a SageMaker to access S3 and ECR resources. SageMaker hosted Endpoints instances launched by this Estimator run with this role.

    Definition Classes
    PCASageMakerEstimatorSageMakerEstimator
  79. final def set(paramPair: ParamPair[_]): PCASageMakerEstimator.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  80. final def set(param: String, value: Any): PCASageMakerEstimator.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  81. final def set[T](param: Param[T], value: T): PCASageMakerEstimator.this.type

    Permalink
    Definition Classes
    Params
  82. def setAlgorithmMode(value: String): PCASageMakerEstimator.this.type

    Permalink
  83. final def setDefault(paramPairs: ParamPair[_]*): PCASageMakerEstimator.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  84. final def setDefault[T](param: Param[T], value: T): PCASageMakerEstimator.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  85. def setExtraComponents(value: Int): PCASageMakerEstimator.this.type

    Permalink
  86. def setFeatureDim(value: Int): PCASageMakerEstimator.this.type

    Permalink
  87. def setMiniBatchSize(value: Int): PCASageMakerEstimator.this.type

    Permalink
  88. def setNumComponents(value: Int): PCASageMakerEstimator.this.type

    Permalink
  89. def setSubtractMean(value: Boolean): PCASageMakerEstimator.this.type

    Permalink
  90. val stsClient: AWSSecurityTokenService

    Permalink

    AmazonSTS.

    AmazonSTS. Used to resolve the account number when creating staging input / output buckets.

    Definition Classes
    PCASageMakerEstimatorSageMakerEstimator
  91. val subtractMean: Param[String]

    Permalink

    Whether to subtract the mean during training and inference Default: True

    Whether to subtract the mean during training and inference Default: True

    Definition Classes
    PCAParams
  92. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  93. def toString(): String

    Permalink
    Definition Classes
    Identifiable → AnyRef → Any
  94. val trainingChannelName: String

    Permalink

    The SageMaker Channel name to input serialized Dataset fit input to

    The SageMaker Channel name to input serialized Dataset fit input to

    Definition Classes
    PCASageMakerEstimatorSageMakerEstimator
  95. val trainingCompressionCodec: Option[String]

    Permalink

    The type of compression to use when serializing the Dataset being fit for input to SageMaker.

    The type of compression to use when serializing the Dataset being fit for input to SageMaker.

    Definition Classes
    PCASageMakerEstimatorSageMakerEstimator
  96. val trainingContentType: Option[String]

    Permalink

    The MIME type of the training data.

    The MIME type of the training data.

    Definition Classes
    PCASageMakerEstimatorSageMakerEstimator
  97. val trainingImage: String

    Permalink

    A SageMaker Training Job Algorithm Specification Training Image Docker image URI.

    A SageMaker Training Job Algorithm Specification Training Image Docker image URI.

    Definition Classes
    SageMakerEstimator
  98. val trainingInputMode: String

    Permalink

    The SageMaker Training Job Channel input mode.

    The SageMaker Training Job Channel input mode.

    Definition Classes
    PCASageMakerEstimatorSageMakerEstimator
  99. val trainingInputS3DataPath: S3Resource

    Permalink

    An S3 location to upload SageMaker Training Job input data to.

    An S3 location to upload SageMaker Training Job input data to.

    Definition Classes
    PCASageMakerEstimatorSageMakerEstimator
  100. val trainingInstanceCount: Int

    Permalink

    The number of instances of instanceType to run an SageMaker Training Job with

    The number of instances of instanceType to run an SageMaker Training Job with

    Definition Classes
    PCASageMakerEstimatorSageMakerEstimator
  101. val trainingInstanceType: String

    Permalink

    The SageMaker TrainingJob Instance Type to use

    The SageMaker TrainingJob Instance Type to use

    Definition Classes
    PCASageMakerEstimatorSageMakerEstimator
  102. val trainingInstanceVolumeSizeInGB: Int

    Permalink

    The EBS volume size in gigabytes of each instance.

    The EBS volume size in gigabytes of each instance.

    Definition Classes
    PCASageMakerEstimatorSageMakerEstimator
  103. val trainingKmsKeyId: Option[String]

    Permalink

    A KMS key ID for the Output Data Source

    A KMS key ID for the Output Data Source

    Definition Classes
    PCASageMakerEstimatorSageMakerEstimator
  104. val trainingMaxRuntimeInSeconds: Int

    Permalink

    A SageMaker Training Job Termination Condition MaxRuntimeInHours.

    A SageMaker Training Job Termination Condition MaxRuntimeInHours.

    Definition Classes
    PCASageMakerEstimatorSageMakerEstimator
  105. val trainingOutputS3DataPath: S3Resource

    Permalink

    An S3 location for SageMaker to store Training Job output data to.

    An S3 location for SageMaker to store Training Job output data to.

    Definition Classes
    PCASageMakerEstimatorSageMakerEstimator
  106. val trainingProjectedColumns: Option[List[String]]

    Permalink

    The columns to project from the Dataset being fit before training.

    The columns to project from the Dataset being fit before training. If an Optional.empty is passed then no specific projection will occur and all columns will be serialized.

    Definition Classes
    PCASageMakerEstimatorSageMakerEstimator
  107. val trainingS3DataDistribution: String

    Permalink

    The SageMaker Training Job S3 data distribution scheme.

    The SageMaker Training Job S3 data distribution scheme.

    Definition Classes
    PCASageMakerEstimatorSageMakerEstimator
  108. val trainingSparkDataFormat: String

    Permalink

    The Spark Data Format name used to serialize the Dataset being fit for input to SageMaker.

    The Spark Data Format name used to serialize the Dataset being fit for input to SageMaker.

    Definition Classes
    PCASageMakerEstimatorSageMakerEstimator
  109. val trainingSparkDataFormatOptions: Map[String, String]

    Permalink

    The Spark Data Format Options used during serialization of the Dataset being fit.

    The Spark Data Format Options used during serialization of the Dataset being fit.

    Definition Classes
    PCASageMakerEstimatorSageMakerEstimator
  110. def transformSchema(schema: StructType): StructType

    Permalink
    Definition Classes
    PCASageMakerEstimatorSageMakerEstimator → PipelineStage
  111. def transformSchema(schema: StructType, logging: Boolean): StructType

    Permalink
    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  112. val uid: String

    Permalink

    The unique identifier of this Estimator.

    The unique identifier of this Estimator. Used to represent this stage in Spark ML pipelines.

    Definition Classes
    PCASageMakerEstimatorSageMakerEstimator → Identifiable
  113. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  114. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  115. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from PCAParams

Inherited from SageMakerAlgorithmParams

Inherited from SageMakerEstimator

Inherited from Estimator[SageMakerModel]

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

Ungrouped