Skip to content

Memory

Memory management for Bedrock AgentCore SDK.

bedrock_agentcore.memory

Bedrock AgentCore Memory module for agent memory management capabilities.

MemoryClient

High-level Bedrock AgentCore Memory client with essential operations.

Source code in bedrock_agentcore/memory/client.py
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
class MemoryClient:
    """High-level Bedrock AgentCore Memory client with essential operations."""

    def __init__(self, region_name: Optional[str] = None):
        """Initialize the Memory client."""
        self.region_name = region_name or boto3.Session().region_name or "us-west-2"

        self.gmcp_client = boto3.client("bedrock-agentcore-control", region_name=self.region_name)
        self.gmdp_client = boto3.client("bedrock-agentcore", region_name=self.region_name)

        logger.info(
            "Initialized MemoryClient for control plane: %s, data plane: %s",
            self.gmcp_client.meta.region_name,
            self.gmdp_client.meta.region_name,
        )

    def create_memory(
        self,
        name: str,
        strategies: Optional[List[Dict[str, Any]]] = None,
        description: Optional[str] = None,
        event_expiry_days: int = 90,
        memory_execution_role_arn: Optional[str] = None,
    ) -> Dict[str, Any]:
        """Create a memory with simplified configuration."""
        if strategies is None:
            strategies = []

        try:
            processed_strategies = self._add_default_namespaces(strategies)

            params = {
                "name": name,
                "eventExpiryDuration": event_expiry_days,
                "memoryStrategies": processed_strategies,  # Using old field name for input
                "clientToken": str(uuid.uuid4()),
            }

            if description is not None:
                params["description"] = description

            if memory_execution_role_arn is not None:
                params["memoryExecutionRoleArn"] = memory_execution_role_arn

            response = self.gmcp_client.create_memory(**params)

            memory = response["memory"]
            # Normalize response to handle new field names
            memory = self._normalize_memory_response(memory)

            logger.info("Created memory: %s", memory["memoryId"])
            return memory

        except ClientError as e:
            logger.error("Failed to create memory: %s", e)
            raise

    def create_memory_and_wait(
        self,
        name: str,
        strategies: List[Dict[str, Any]],
        description: Optional[str] = None,
        event_expiry_days: int = 90,
        memory_execution_role_arn: Optional[str] = None,
        max_wait: int = 300,
        poll_interval: int = 10,
    ) -> Dict[str, Any]:
        """Create a memory and wait for it to become ACTIVE.

        This method creates a memory and polls until it reaches ACTIVE status,
        providing a convenient way to ensure the memory is ready for use.

        Args:
            name: Name for the memory resource
            strategies: List of strategy configurations
            description: Optional description
            event_expiry_days: How long to retain events (default: 90 days)
            memory_execution_role_arn: IAM role ARN for memory execution
            max_wait: Maximum seconds to wait (default: 300)
            poll_interval: Seconds between status checks (default: 10)

        Returns:
            Created memory object in ACTIVE status

        Raises:
            TimeoutError: If memory doesn't become ACTIVE within max_wait
            RuntimeError: If memory creation fails
        """
        # Create the memory
        memory = self.create_memory(
            name=name,
            strategies=strategies,
            description=description,
            event_expiry_days=event_expiry_days,
            memory_execution_role_arn=memory_execution_role_arn,
        )

        memory_id = memory.get("memoryId", memory.get("id"))  # Handle both field names
        if memory_id is None:
            memory_id = ""
        logger.info("Created memory %s, waiting for ACTIVE status...", memory_id)

        start_time = time.time()
        while time.time() - start_time < max_wait:
            elapsed = int(time.time() - start_time)

            try:
                status = self.get_memory_status(memory_id)

                if status == MemoryStatus.ACTIVE.value:
                    logger.info("Memory %s is now ACTIVE (took %d seconds)", memory_id, elapsed)
                    # Get fresh memory details
                    response = self.gmcp_client.get_memory(memoryId=memory_id)  # Input uses old field name
                    memory = self._normalize_memory_response(response["memory"])
                    return memory
                elif status == MemoryStatus.FAILED.value:
                    # Get failure reason if available
                    response = self.gmcp_client.get_memory(memoryId=memory_id)  # Input uses old field name
                    failure_reason = response["memory"].get("failureReason", "Unknown")
                    raise RuntimeError("Memory creation failed: %s" % failure_reason)
                else:
                    logger.debug("Memory status: %s (%d seconds elapsed)", status, elapsed)

            except ClientError as e:
                logger.error("Error checking memory status: %s", e)
                raise

            time.sleep(poll_interval)

        raise TimeoutError("Memory %s did not become ACTIVE within %d seconds" % (memory_id, max_wait))

    def retrieve_memories(
        self, memory_id: str, namespace: str, query: str, actor_id: Optional[str] = None, top_k: int = 3
    ) -> List[Dict[str, Any]]:
        """Retrieve relevant memories from a namespace.

        Note: Wildcards (*) are NOT supported in namespaces. You must provide the
        exact namespace path with all variables resolved.

        Args:
            memory_id: Memory resource ID
            namespace: Exact namespace path (no wildcards)
            query: Search query
            actor_id: Optional actor ID (deprecated, use namespace)
            top_k: Number of results to return

        Returns:
            List of memory records

        Example:
            # Correct - exact namespace
            memories = client.retrieve_memories(
                memory_id="mem-123",
                namespace="support/facts/session-456",
                query="customer preferences"
            )

            # Incorrect - wildcards not supported
            # memories = client.retrieve_memories(..., namespace="support/facts/*", ...)
        """
        if "*" in namespace:
            logger.error("Wildcards are not supported in namespaces. Please provide exact namespace.")
            return []

        try:
            # Let service handle all namespace validation
            response = self.gmdp_client.retrieve_memory_records(
                memoryId=memory_id, namespace=namespace, searchCriteria={"searchQuery": query, "topK": top_k}
            )

            memories = response.get("memoryRecordSummaries", [])
            logger.info("Retrieved %d memories from namespace: %s", len(memories), namespace)
            return memories

        except ClientError as e:
            error_code = e.response["Error"]["Code"]
            error_msg = e.response["Error"]["Message"]

            if error_code == "ResourceNotFoundException":
                logger.warning(
                    "Memory or namespace not found. Ensure memory %s exists and namespace '%s' is configured",
                    memory_id,
                    namespace,
                )
            elif error_code == "ValidationException":
                logger.warning("Invalid search parameters: %s", error_msg)
            elif error_code == "ServiceException":
                logger.warning("Service error: %s. This may be temporary - try again later", error_msg)
            else:
                logger.warning("Memory retrieval failed (%s): %s", error_code, error_msg)

            return []

    def create_event(
        self,
        memory_id: str,
        actor_id: str,
        session_id: str,
        messages: List[Tuple[str, str]],
        event_timestamp: Optional[datetime] = None,
        branch: Optional[Dict[str, str]] = None,
    ) -> Dict[str, Any]:
        """Save an event of an agent interaction or conversation with a user.

        This is the basis of short-term memory. If you configured your Memory resource
        to have MemoryStrategies, then events that are saved in short-term memory via
        create_event will be used to extract long-term memory records.

        Args:
            memory_id: Memory resource ID
            actor_id: Actor identifier (could be id of your user or an agent)
            session_id: Session identifier (meant to logically group a series of events)
            messages: List of (text, role) tuples. Role can be USER, ASSISTANT, TOOL, etc.
            event_timestamp: timestamp for the entire event (not per message)
            branch: Optional branch info. For new branches: {"rootEventId": "...", "name": "..."}
                   For continuing existing branch: {"name": "..."} or {"name": "...", "rootEventId": "..."}
                   A branch is used when you want to have a different history of events.

        Returns:
            Created event

        Example:
            event = client.create_event(
                memory_id=memory.get("id"),
                actor_id="weatherWorrier",
                session_id="WeatherSession",
                messages=[
                    ("What's the weather?", "USER"),
                    ("Today is sunny", "ASSISTANT")
                ]
            )
            root_event_id = event.get("eventId")
            print(event)

            # Continue the conversation
            event = client.create_event(
                memory_id=memory.get("id"),
                actor_id="weatherWorrier",
                session_id="WeatherSession",
                messages=[
                    ("How about the weather tomorrow", "USER"),
                    ("Tomorrow is cold!", "ASSISTANT")
                ]
            )
            print(event)

            # branch the conversation so that the previous message is not part of the history
            # (suppose you did not mean to ask about the weather tomorrow and want to undo
            # that, and replace with a new message)
            event = client.create_event(
                memory_id=memory.get("id"),
                actor_id="weatherWorrier",
                session_id="WeatherSession",
                branch={"name": "differentWeatherQuestion", "rootEventId": root_event_id},
                messages=[
                    ("How about the weather a year from now", "USER"),
                    ("I can't predict that far into the future!", "ASSISTANT")
                ]
            )
            print(event)
        """
        try:
            if not messages:
                raise ValueError("At least one message is required")

            payload = []
            for msg in messages:
                if len(msg) != 2:
                    raise ValueError("Each message must be (text, role)")

                text, role = msg

                try:
                    role_enum = MessageRole(role.upper())
                except ValueError as err:
                    raise ValueError(
                        "Invalid role '%s'. Must be one of: %s" % (role, ", ".join([r.value for r in MessageRole]))
                    ) from err

                payload.append({"conversational": {"content": {"text": text}, "role": role_enum.value}})

            # Use provided timestamp or current time
            if event_timestamp is None:
                event_timestamp = datetime.utcnow()

            params = {
                "memoryId": memory_id,
                "actorId": actor_id,
                "sessionId": session_id,
                "eventTimestamp": event_timestamp,
                "payload": payload,
            }

            if branch:
                params["branch"] = branch

            response = self.gmdp_client.create_event(**params)

            event = response["event"]
            logger.info("Created event: %s", event["eventId"])

            return event

        except ClientError as e:
            logger.error("Failed to create event: %s", e)
            raise

    def save_conversation(
        self,
        memory_id: str,
        actor_id: str,
        session_id: str,
        messages: List[Tuple[str, str]],
        event_timestamp: Optional[datetime] = None,
        branch: Optional[Dict[str, str]] = None,
    ) -> Dict[str, Any]:
        """DEPRECATED: Use create_event() instead.

        Args:
            memory_id: Memory resource ID
            actor_id: Actor identifier
            session_id: Session identifier
            messages: List of (text, role) tuples. Role can be USER, ASSISTANT, TOOL, etc.
            event_timestamp: Optional timestamp for the entire event (not per message)
            branch: Optional branch info. For new branches: {"rootEventId": "...", "name": "..."}
                   For continuing existing branch: {"name": "..."} or {"name": "...", "rootEventId": "..."}

        Returns:
            Created event

        Example:
            # Save multi-turn conversation
            event = client.save_conversation(
                memory_id="mem-xyz",
                actor_id="user-123",
                session_id="session-456",
                messages=[
                    ("What's the weather?", "USER"),
                    ("And tomorrow?", "USER"),
                    ("Checking weather...", "TOOL"),
                    ("Today sunny, tomorrow rain", "ASSISTANT")
                ]
            )

            # Continue existing branch (only name required)
            event = client.save_conversation(
                memory_id="mem-xyz",
                actor_id="user-123",
                session_id="session-456",
                messages=[("Continue conversation", "USER")],
                branch={"name": "existing-branch"}
            )
        """
        try:
            if not messages:
                raise ValueError("At least one message is required")

            # Build payload
            payload = []

            for msg in messages:
                if len(msg) != 2:
                    raise ValueError("Each message must be (text, role)")

                text, role = msg

                # Validate role
                try:
                    role_enum = MessageRole(role.upper())
                except ValueError as err:
                    raise ValueError(
                        "Invalid role '%s'. Must be one of: %s" % (role, ", ".join([r.value for r in MessageRole]))
                    ) from err

                payload.append({"conversational": {"content": {"text": text}, "role": role_enum.value}})

            # Use provided timestamp or current time
            if event_timestamp is None:
                event_timestamp = datetime.utcnow()

            params = {
                "memoryId": memory_id,
                "actorId": actor_id,
                "sessionId": session_id,
                "eventTimestamp": event_timestamp,
                "payload": payload,
                "clientToken": str(uuid.uuid4()),
            }

            if branch:
                params["branch"] = branch

            response = self.gmdp_client.create_event(**params)

            event = response["event"]
            logger.info("Created event: %s", event["eventId"])

            return event

        except ClientError as e:
            logger.error("Failed to create event: %s", e)
            raise

    def save_turn(
        self,
        memory_id: str,
        actor_id: str,
        session_id: str,
        user_input: str,
        agent_response: str,
        event_timestamp: Optional[datetime] = None,
    ) -> Dict[str, Any]:
        """DEPRECATED: Use save_conversation() for more flexibility.

        This method will be removed in v1.0.0.
        """
        warnings.warn(
            "save_turn() is deprecated and will be removed in v1.0.0. "
            "Use save_conversation() for flexible message handling.",
            DeprecationWarning,
            stacklevel=2,
        )

        messages = [(user_input, "USER"), (agent_response, "ASSISTANT")]

        return self.create_event(
            memory_id=memory_id,
            actor_id=actor_id,
            session_id=session_id,
            messages=messages,
            event_timestamp=event_timestamp,
        )

    def process_turn(
        self,
        memory_id: str,
        actor_id: str,
        session_id: str,
        user_input: str,
        agent_response: str,
        event_timestamp: Optional[datetime] = None,
        retrieval_namespace: Optional[str] = None,
        retrieval_query: Optional[str] = None,
        top_k: int = 3,
    ) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]:
        """DEPRECATED: Use retrieve_memories() and save_conversation() separately.

        This method will be removed in v1.0.0.
        """
        warnings.warn(
            "process_turn() is deprecated and will be removed in v1.0.0. "
            "Use retrieve_memories() and save_conversation() separately, or use process_turn_with_llm().",
            DeprecationWarning,
            stacklevel=2,
        )

        retrieved_memories = []

        if retrieval_namespace:
            search_query = retrieval_query or user_input
            retrieved_memories = self.retrieve_memories(
                memory_id=memory_id, namespace=retrieval_namespace, query=search_query, top_k=top_k
            )

        event = self.save_turn(
            memory_id=memory_id,
            actor_id=actor_id,
            session_id=session_id,
            user_input=user_input,
            agent_response=agent_response,
            event_timestamp=event_timestamp,
        )

        return retrieved_memories, event

    def process_turn_with_llm(
        self,
        memory_id: str,
        actor_id: str,
        session_id: str,
        user_input: str,
        llm_callback: Callable[[str, List[Dict[str, Any]]], str],
        retrieval_namespace: Optional[str] = None,
        retrieval_query: Optional[str] = None,
        top_k: int = 3,
        event_timestamp: Optional[datetime] = None,
    ) -> Tuple[List[Dict[str, Any]], str, Dict[str, Any]]:
        r"""Complete conversation turn with LLM callback integration.

        This method combines memory retrieval, LLM invocation, and response storage
        in a single call using a callback pattern.

        Args:
            memory_id: Memory resource ID
            actor_id: Actor identifier (e.g., "user-123")
            session_id: Session identifier
            user_input: The user's message
            llm_callback: Function that takes (user_input, memories) and returns agent_response
                         The callback receives the user input and retrieved memories,
                         and should return the agent's response string
            retrieval_namespace: Namespace to search for memories (optional)
            retrieval_query: Custom search query (defaults to user_input)
            top_k: Number of memories to retrieve
            event_timestamp: Optional timestamp for the event

        Returns:
            Tuple of (retrieved_memories, agent_response, created_event)

        Example:
            def my_llm(user_input: str, memories: List[Dict]) -> str:
                # Format context from memories
                context = "\\n".join([m['content']['text'] for m in memories])

                # Call your LLM (Bedrock, OpenAI, etc.)
                response = bedrock.invoke_model(
                    messages=[
                        {"role": "system", "content": f"Context: {context}"},
                        {"role": "user", "content": user_input}
                    ]
                )
                return response['content']

            memories, response, event = client.process_turn_with_llm(
                memory_id="mem-xyz",
                actor_id="user-123",
                session_id="session-456",
                user_input="What did we discuss yesterday?",
                llm_callback=my_llm,
                retrieval_namespace="support/facts/{sessionId}"
            )
        """
        # Step 1: Retrieve relevant memories
        retrieved_memories = []
        if retrieval_namespace:
            search_query = retrieval_query or user_input
            retrieved_memories = self.retrieve_memories(
                memory_id=memory_id, namespace=retrieval_namespace, query=search_query, top_k=top_k
            )
            logger.info("Retrieved %d memories for LLM context", len(retrieved_memories))

        # Step 2: Invoke LLM callback
        try:
            agent_response = llm_callback(user_input, retrieved_memories)
            if not isinstance(agent_response, str):
                raise ValueError("LLM callback must return a string response")
            logger.info("LLM callback generated response")
        except Exception as e:
            logger.error("LLM callback failed: %s", e)
            raise

        # Step 3: Save the conversation turn
        event = self.create_event(
            memory_id=memory_id,
            actor_id=actor_id,
            session_id=session_id,
            messages=[(user_input, "USER"), (agent_response, "ASSISTANT")],
            event_timestamp=event_timestamp,
        )

        logger.info("Completed full conversation turn with LLM")
        return retrieved_memories, agent_response, event

    def list_events(
        self,
        memory_id: str,
        actor_id: str,
        session_id: str,
        branch_name: Optional[str] = None,
        include_parent_events: bool = False,
        max_results: int = 100,
        include_payload: bool = True,
    ) -> List[Dict[str, Any]]:
        """List all events in a session with pagination support.

        This method provides direct access to the raw events API, allowing developers
        to retrieve all events without the turn grouping logic of get_last_k_turns.

        Args:
            memory_id: Memory resource ID
            actor_id: Actor identifier
            session_id: Session identifier
            branch_name: Optional branch name to filter events (None for all branches)
            include_parent_events: Whether to include parent branch events (only applies with branch_name)
            max_results: Maximum number of events to return
            include_payload: Whether to include event payloads in response

        Returns:
            List of event dictionaries in chronological order

        Example:
            # Get all events
            events = client.list_events(memory_id, actor_id, session_id)

            # Get only main branch events
            main_events = client.list_events(memory_id, actor_id, session_id, branch_name="main")

            # Get events from a specific branch
            branch_events = client.list_events(memory_id, actor_id, session_id, branch_name="test-branch")
        """
        try:
            all_events = []
            next_token = None

            while len(all_events) < max_results:
                params = {
                    "memoryId": memory_id,
                    "actorId": actor_id,
                    "sessionId": session_id,
                    "maxResults": min(100, max_results - len(all_events)),
                }

                if next_token:
                    params["nextToken"] = next_token

                # Add branch filter if specified (but not for "main")
                if branch_name and branch_name != "main":
                    params["filter"] = {"branch": {"name": branch_name, "includeParentBranches": include_parent_events}}

                response = self.gmdp_client.list_events(**params)

                events = response.get("events", [])
                all_events.extend(events)

                next_token = response.get("nextToken")
                if not next_token or len(all_events) >= max_results:
                    break

            logger.info("Retrieved total of %d events", len(all_events))
            return all_events[:max_results]

        except ClientError as e:
            logger.error("Failed to list events: %s", e)
            raise

    def list_branches(self, memory_id: str, actor_id: str, session_id: str) -> List[Dict[str, Any]]:
        """List all branches in a session.

        This method handles pagination automatically and provides a structured view
        of all conversation branches, which would require complex pagination and
        grouping logic if done with raw boto3 calls.

        Returns:
            List of branch information including name and root event
        """
        try:
            # Get all events - need to handle pagination for complete list
            all_events = []
            next_token = None

            while True:
                params = {"memoryId": memory_id, "actorId": actor_id, "sessionId": session_id, "maxResults": 100}

                if next_token:
                    params["nextToken"] = next_token

                response = self.gmdp_client.list_events(**params)
                all_events.extend(response.get("events", []))

                next_token = response.get("nextToken")
                if not next_token:
                    break

            branches = {}
            main_branch_events = []

            for event in all_events:
                branch_info = event.get("branch")
                if branch_info:
                    branch_name = branch_info["name"]
                    if branch_name not in branches:
                        branches[branch_name] = {
                            "name": branch_name,
                            "rootEventId": branch_info.get("rootEventId"),
                            "firstEventId": event["eventId"],
                            "eventCount": 1,
                            "created": event["eventTimestamp"],
                        }
                    else:
                        branches[branch_name]["eventCount"] += 1
                else:
                    main_branch_events.append(event)

            # Build result list
            result = []

            # Only add main branch if there are actual events
            if main_branch_events:
                result.append(
                    {
                        "name": "main",
                        "rootEventId": None,
                        "firstEventId": main_branch_events[0]["eventId"],
                        "eventCount": len(main_branch_events),
                        "created": main_branch_events[0]["eventTimestamp"],
                    }
                )

            # Add other branches
            result.extend(list(branches.values()))

            logger.info("Found %d branches in session %s", len(result), session_id)
            return result

        except ClientError as e:
            logger.error("Failed to list branches: %s", e)
            raise

    def list_branch_events(
        self,
        memory_id: str,
        actor_id: str,
        session_id: str,
        branch_name: Optional[str] = None,
        include_parent_events: bool = False,
        max_results: int = 100,
    ) -> List[Dict[str, Any]]:
        """List events in a specific branch.

        This method provides complex filtering and pagination that would require
        significant boilerplate code with raw boto3. It handles:
        - Automatic pagination across multiple API calls
        - Branch filtering with parent event inclusion logic
        - Main branch isolation (events without branch info)

        Args:
            memory_id: Memory resource ID
            actor_id: Actor identifier
            session_id: Session identifier
            branch_name: Branch name (None for main branch)
            include_parent_events: Whether to include events from parent branches
            max_results: Maximum events to return

        Returns:
            List of events in the branch
        """
        try:
            params = {
                "memoryId": memory_id,
                "actorId": actor_id,
                "sessionId": session_id,
                "maxResults": min(100, max_results),
            }

            # Only add filter when we have a specific branch name
            if branch_name:
                params["filter"] = {"branch": {"name": branch_name, "includeParentBranches": include_parent_events}}

            response = self.gmdp_client.list_events(**params)
            events = response.get("events", [])

            # Handle pagination
            next_token = response.get("nextToken")
            while next_token and len(events) < max_results:
                params["nextToken"] = next_token
                params["maxResults"] = min(100, max_results - len(events))
                response = self.gmdp_client.list_events(**params)
                events.extend(response.get("events", []))
                next_token = response.get("nextToken")

            # Filter for main branch if no branch specified
            if not branch_name:
                events = [e for e in events if not e.get("branch")]

            logger.info("Retrieved %d events from branch '%s'", len(events), branch_name or "main")
            return events

        except ClientError as e:
            logger.error("Failed to list branch events: %s", e)
            raise

    def get_conversation_tree(self, memory_id: str, actor_id: str, session_id: str) -> Dict[str, Any]:
        """Get a tree structure of the conversation with all branches.

        This method transforms a flat list of events into a hierarchical tree structure,
        providing visualization-ready data that would be complex to build from raw events.
        It handles:
        - Full pagination to get all events
        - Grouping by branches
        - Message summarization
        - Tree structure building

        Returns:
            Dictionary representing the conversation tree structure
        """
        try:
            # Get all events - need to handle pagination for complete list
            all_events = []
            next_token = None

            while True:
                params = {"memoryId": memory_id, "actorId": actor_id, "sessionId": session_id, "maxResults": 100}

                if next_token:
                    params["nextToken"] = next_token

                response = self.gmdp_client.list_events(**params)
                all_events.extend(response.get("events", []))

                next_token = response.get("nextToken")
                if not next_token:
                    break

            # Build tree structure
            tree = {"session_id": session_id, "actor_id": actor_id, "main_branch": {"events": [], "branches": {}}}

            # Group events by branch
            for event in all_events:
                event_summary = {"eventId": event["eventId"], "timestamp": event["eventTimestamp"], "messages": []}

                # Extract message summaries
                if "payload" in event:
                    for payload_item in event.get("payload", []):
                        if "conversational" in payload_item:
                            conv = payload_item["conversational"]
                            event_summary["messages"].append(
                                {"role": conv.get("role"), "text": conv.get("content", {}).get("text", "")[:50] + "..."}
                            )

                branch_info = event.get("branch")
                if branch_info:
                    branch_name = branch_info["name"]
                    root_event = branch_info.get("rootEventId")  # Use .get() to handle missing field

                    if branch_name not in tree["main_branch"]["branches"]:
                        tree["main_branch"]["branches"][branch_name] = {"root_event_id": root_event, "events": []}

                    tree["main_branch"]["branches"][branch_name]["events"].append(event_summary)
                else:
                    tree["main_branch"]["events"].append(event_summary)

            logger.info("Built conversation tree with %d branches", len(tree["main_branch"]["branches"]))
            return tree

        except ClientError as e:
            logger.error("Failed to build conversation tree: %s", e)
            raise

    def merge_branch_context(
        self, memory_id: str, actor_id: str, session_id: str, branch_name: str, include_parent: bool = True
    ) -> List[Dict[str, Any]]:
        """Get all messages from a branch for context building.

        Args:
            memory_id: Memory resource ID
            actor_id: Actor identifier
            session_id: Session identifier
            branch_name: Branch to get context from
            include_parent: Whether to include parent branch events

        Returns:
            List of all messages in chronological order
        """
        events = self.list_branch_events(
            memory_id=memory_id,
            actor_id=actor_id,
            session_id=session_id,
            branch_name=branch_name,
            include_parent_events=include_parent,
            max_results=100,
        )

        messages = []
        for event in events:
            if "payload" in event:
                for payload_item in event.get("payload", []):
                    if "conversational" in payload_item:
                        conv = payload_item["conversational"]
                        messages.append(
                            {
                                "timestamp": event["eventTimestamp"],
                                "eventId": event["eventId"],
                                "branch": event.get("branch", {}).get("name", "main"),
                                "role": conv.get("role"),
                                "content": conv.get("content", {}).get("text", ""),
                            }
                        )

        # Sort by timestamp
        messages.sort(key=lambda x: x["timestamp"])

        logger.info("Retrieved %d messages from branch '%s'", len(messages), branch_name)
        return messages

    def get_last_k_turns(
        self,
        memory_id: str,
        actor_id: str,
        session_id: str,
        k: int = 5,
        branch_name: Optional[str] = None,
        include_branches: bool = False,
        max_results: int = 100,
    ) -> List[List[Dict[str, Any]]]:
        """Get the last K conversation turns.

        A "turn" typically consists of a user message followed by assistant response(s).
        This method groups messages into logical turns for easier processing.

        Returns:
            List of turns, where each turn is a list of message dictionaries
        """
        try:
            # Use the new list_events method
            events = self.list_events(
                memory_id=memory_id,
                actor_id=actor_id,
                session_id=session_id,
                branch_name=branch_name,
                include_parent_events=False,
                max_results=max_results,
            )

            if not events:
                return []

            # Process events to group into turns
            turns = []
            current_turn = []

            # Process events in chronological order
            for _, event in enumerate(events):
                if "payload" in event and event["payload"]:
                    for payload_item in event["payload"]:
                        if "conversational" in payload_item:
                            role = payload_item["conversational"].get("role")

                            # Start a new turn when we see a USER message and already have messages
                            if role == Role.USER.value and current_turn:
                                turns.append(current_turn)
                                current_turn = []

                            current_turn.append(payload_item["conversational"])

            # Don't forget the last turn
            if current_turn:
                turns.append(current_turn)

            # Return the last k turns
            if len(turns) > k:
                result = turns[-k:]  # Get last k turns
            else:
                result = turns

            return result

        except ClientError as e:
            logger.error("Failed to get last K turns: %s", e)
            raise

    def fork_conversation(
        self,
        memory_id: str,
        actor_id: str,
        session_id: str,
        root_event_id: str,
        branch_name: str,
        new_messages: List[Tuple[str, str]],
        event_timestamp: Optional[datetime] = None,
    ) -> Dict[str, Any]:
        """Fork a conversation from a specific event to create a new branch."""
        try:
            branch = {"rootEventId": root_event_id, "name": branch_name}

            event = self.create_event(
                memory_id=memory_id,
                actor_id=actor_id,
                session_id=session_id,
                messages=new_messages,
                branch=branch,
                event_timestamp=event_timestamp,
            )

            logger.info("Created branch '%s' from event %s", branch_name, root_event_id)
            return event

        except ClientError as e:
            logger.error("Failed to fork conversation: %s", e)
            raise

    def get_memory_strategies(self, memory_id: str) -> List[Dict[str, Any]]:
        """Get all strategies for a memory."""
        try:
            response = self.gmcp_client.get_memory(memoryId=memory_id)  # Input uses old field name
            memory = response["memory"]

            # Handle both old and new field names in response
            strategies = memory.get("strategies", memory.get("memoryStrategies", []))

            # Normalize strategy fields
            normalized_strategies = []
            for strategy in strategies:
                # Create normalized version with both old and new field names
                normalized = strategy.copy()

                # Ensure both field name versions exist
                if "strategyId" in strategy and "memoryStrategyId" not in normalized:
                    normalized["memoryStrategyId"] = strategy["strategyId"]
                elif "memoryStrategyId" in strategy and "strategyId" not in normalized:
                    normalized["strategyId"] = strategy["memoryStrategyId"]

                if "type" in strategy and "memoryStrategyType" not in normalized:
                    normalized["memoryStrategyType"] = strategy["type"]
                elif "memoryStrategyType" in strategy and "type" not in normalized:
                    normalized["type"] = strategy["memoryStrategyType"]

                normalized_strategies.append(normalized)

            return normalized_strategies
        except ClientError as e:
            logger.error("Failed to get memory strategies: %s", e)
            raise

    def get_memory_status(self, memory_id: str) -> str:
        """Get current memory status."""
        try:
            response = self.gmcp_client.get_memory(memoryId=memory_id)  # Input uses old field name
            return response["memory"]["status"]
        except ClientError as e:
            logger.error("Failed to get memory status: %s", e)
            raise

    def list_memories(self, max_results: int = 100) -> List[Dict[str, Any]]:
        """List all memories for the account."""
        try:
            # Ensure max_results doesn't exceed API limit per request
            results_per_request = min(max_results, 100)

            response = self.gmcp_client.list_memories(maxResults=results_per_request)
            memories = response.get("memories", [])

            next_token = response.get("nextToken")
            while next_token and len(memories) < max_results:
                remaining = max_results - len(memories)
                results_per_request = min(remaining, 100)

                response = self.gmcp_client.list_memories(maxResults=results_per_request, nextToken=next_token)
                memories.extend(response.get("memories", []))
                next_token = response.get("nextToken")

            # Normalize memory summaries if they contain new field names
            normalized_memories = []
            for memory in memories[:max_results]:
                normalized = memory.copy()
                # Ensure both field name versions exist
                if "id" in memory and "memoryId" not in normalized:
                    normalized["memoryId"] = memory["id"]
                elif "memoryId" in memory and "id" not in normalized:
                    normalized["id"] = memory["memoryId"]
                normalized_memories.append(normalized)

            return normalized_memories

        except ClientError as e:
            logger.error("Failed to list memories: %s", e)
            raise

    def delete_memory(self, memory_id: str) -> Dict[str, Any]:
        """Delete a memory resource."""
        try:
            response = self.gmcp_client.delete_memory(
                memoryId=memory_id, clientToken=str(uuid.uuid4())
            )  # Input uses old field name
            logger.info("Deleted memory: %s", memory_id)
            return response
        except ClientError as e:
            logger.error("Failed to delete memory: %s", e)
            raise

    def delete_memory_and_wait(self, memory_id: str, max_wait: int = 300, poll_interval: int = 10) -> Dict[str, Any]:
        """Delete a memory and wait for deletion to complete.

        This method deletes a memory and polls until it's fully deleted,
        ensuring clean resource cleanup.

        Args:
            memory_id: Memory resource ID to delete
            max_wait: Maximum seconds to wait (default: 300)
            poll_interval: Seconds between checks (default: 10)

        Returns:
            Final deletion response

        Raises:
            TimeoutError: If deletion doesn't complete within max_wait
        """
        # Initiate deletion
        response = self.delete_memory(memory_id)
        logger.info("Initiated deletion of memory %s", memory_id)

        start_time = time.time()
        while time.time() - start_time < max_wait:
            elapsed = int(time.time() - start_time)

            try:
                # Try to get the memory - if it doesn't exist, deletion is complete
                self.gmcp_client.get_memory(memoryId=memory_id)  # Input uses old field name
                logger.debug("Memory still exists, waiting... (%d seconds elapsed)", elapsed)

            except ClientError as e:
                if e.response["Error"]["Code"] == "ResourceNotFoundException":
                    logger.info("Memory %s successfully deleted (took %d seconds)", memory_id, elapsed)
                    return response
                else:
                    logger.error("Error checking memory status: %s", e)
                    raise

            time.sleep(poll_interval)

        raise TimeoutError("Memory %s was not deleted within %d seconds" % (memory_id, max_wait))

    def add_semantic_strategy(
        self,
        memory_id: str,
        name: str,
        description: Optional[str] = None,
        namespaces: Optional[List[str]] = None,
    ) -> Dict[str, Any]:
        """Add a semantic memory strategy.

        Note: Configuration is no longer provided for built-in strategies as per API changes.
        """
        strategy: Dict = {
            StrategyType.SEMANTIC.value: {
                "name": name,
            }
        }

        if description:
            strategy[StrategyType.SEMANTIC.value]["description"] = description
        if namespaces:
            strategy[StrategyType.SEMANTIC.value]["namespaces"] = namespaces

        return self._add_strategy(memory_id, strategy)

    def add_semantic_strategy_and_wait(
        self,
        memory_id: str,
        name: str,
        description: Optional[str] = None,
        namespaces: Optional[List[str]] = None,
        max_wait: int = 300,
        poll_interval: int = 10,
    ) -> Dict[str, Any]:
        """Add a semantic strategy and wait for memory to return to ACTIVE state.

        This addresses the issue where adding a strategy puts the memory into
        CREATING state temporarily, preventing subsequent operations.
        """
        # Add the strategy
        self.add_semantic_strategy(memory_id, name, description, namespaces)

        # Wait for memory to return to ACTIVE
        return self._wait_for_memory_active(memory_id, max_wait, poll_interval)

    def add_summary_strategy(
        self,
        memory_id: str,
        name: str,
        description: Optional[str] = None,
        namespaces: Optional[List[str]] = None,
    ) -> Dict[str, Any]:
        """Add a summary memory strategy.

        Note: Configuration is no longer provided for built-in strategies as per API changes.
        """
        strategy: Dict = {
            StrategyType.SUMMARY.value: {
                "name": name,
            }
        }

        if description:
            strategy[StrategyType.SUMMARY.value]["description"] = description
        if namespaces:
            strategy[StrategyType.SUMMARY.value]["namespaces"] = namespaces

        return self._add_strategy(memory_id, strategy)

    def add_summary_strategy_and_wait(
        self,
        memory_id: str,
        name: str,
        description: Optional[str] = None,
        namespaces: Optional[List[str]] = None,
        max_wait: int = 300,
        poll_interval: int = 10,
    ) -> Dict[str, Any]:
        """Add a summary strategy and wait for memory to return to ACTIVE state."""
        self.add_summary_strategy(memory_id, name, description, namespaces)
        return self._wait_for_memory_active(memory_id, max_wait, poll_interval)

    def add_user_preference_strategy(
        self,
        memory_id: str,
        name: str,
        description: Optional[str] = None,
        namespaces: Optional[List[str]] = None,
    ) -> Dict[str, Any]:
        """Add a user preference memory strategy.

        Note: Configuration is no longer provided for built-in strategies as per API changes.
        """
        strategy: Dict = {
            StrategyType.USER_PREFERENCE.value: {
                "name": name,
            }
        }

        if description:
            strategy[StrategyType.USER_PREFERENCE.value]["description"] = description
        if namespaces:
            strategy[StrategyType.USER_PREFERENCE.value]["namespaces"] = namespaces

        return self._add_strategy(memory_id, strategy)

    def add_user_preference_strategy_and_wait(
        self,
        memory_id: str,
        name: str,
        description: Optional[str] = None,
        namespaces: Optional[List[str]] = None,
        max_wait: int = 300,
        poll_interval: int = 10,
    ) -> Dict[str, Any]:
        """Add a user preference strategy and wait for memory to return to ACTIVE state."""
        self.add_user_preference_strategy(memory_id, name, description, namespaces)
        return self._wait_for_memory_active(memory_id, max_wait, poll_interval)

    def add_custom_semantic_strategy(
        self,
        memory_id: str,
        name: str,
        extraction_config: Dict[str, Any],
        consolidation_config: Dict[str, Any],
        description: Optional[str] = None,
        namespaces: Optional[List[str]] = None,
    ) -> Dict[str, Any]:
        """Add a custom semantic strategy with prompts.

        Args:
            memory_id: Memory resource ID
            name: Strategy name
            extraction_config: Extraction configuration with prompt and model:
                {"prompt": "...", "modelId": "..."}
            consolidation_config: Consolidation configuration with prompt and model:
                {"prompt": "...", "modelId": "..."}
            description: Optional description
            namespaces: Optional namespaces list
        """
        strategy = {
            StrategyType.CUSTOM.value: {
                "name": name,
                "configuration": {
                    "semanticOverride": {
                        "extraction": {
                            "appendToPrompt": extraction_config["prompt"],
                            "modelId": extraction_config["modelId"],
                        },
                        "consolidation": {
                            "appendToPrompt": consolidation_config["prompt"],
                            "modelId": consolidation_config["modelId"],
                        },
                    }
                },
            }
        }

        if description:
            strategy[StrategyType.CUSTOM.value]["description"] = description
        if namespaces:
            strategy[StrategyType.CUSTOM.value]["namespaces"] = namespaces

        return self._add_strategy(memory_id, strategy)

    def add_custom_semantic_strategy_and_wait(
        self,
        memory_id: str,
        name: str,
        extraction_config: Dict[str, Any],
        consolidation_config: Dict[str, Any],
        description: Optional[str] = None,
        namespaces: Optional[List[str]] = None,
        max_wait: int = 300,
        poll_interval: int = 10,
    ) -> Dict[str, Any]:
        """Add a custom semantic strategy and wait for memory to return to ACTIVE state."""
        self.add_custom_semantic_strategy(
            memory_id, name, extraction_config, consolidation_config, description, namespaces
        )
        return self._wait_for_memory_active(memory_id, max_wait, poll_interval)

    def modify_strategy(
        self,
        memory_id: str,
        strategy_id: str,
        description: Optional[str] = None,
        namespaces: Optional[List[str]] = None,
        configuration: Optional[Dict[str, Any]] = None,
    ) -> Dict[str, Any]:
        """Modify a strategy with full control over configuration."""
        modify_config: Dict = {"memoryStrategyId": strategy_id}  # Using old field name for input

        if description is not None:
            modify_config["description"] = description
        if namespaces is not None:
            modify_config["namespaces"] = namespaces
        if configuration is not None:
            modify_config["configuration"] = configuration

        return self.update_memory_strategies(memory_id=memory_id, modify_strategies=[modify_config])

    def delete_strategy(self, memory_id: str, strategy_id: str) -> Dict[str, Any]:
        """Delete a strategy from a memory."""
        return self.update_memory_strategies(memory_id=memory_id, delete_strategy_ids=[strategy_id])

    def update_memory_strategies(
        self,
        memory_id: str,
        add_strategies: Optional[List[Dict[str, Any]]] = None,
        modify_strategies: Optional[List[Dict[str, Any]]] = None,
        delete_strategy_ids: Optional[List[str]] = None,
    ) -> Dict[str, Any]:
        """Update memory strategies - add, modify, or delete."""
        try:
            memory_strategies = {}

            if add_strategies:
                processed_add = self._add_default_namespaces(add_strategies)
                memory_strategies["addMemoryStrategies"] = processed_add  # Using old field name for input

            if modify_strategies:
                current_strategies = self.get_memory_strategies(memory_id)
                strategy_map = {s["memoryStrategyId"]: s for s in current_strategies}  # Using normalized field

                modify_list = []
                for strategy in modify_strategies:
                    if "memoryStrategyId" not in strategy:  # Using old field name
                        raise ValueError("Each modify strategy must include memoryStrategyId")

                    strategy_id = strategy["memoryStrategyId"]  # Using old field name
                    strategy_info = strategy_map.get(strategy_id)

                    if not strategy_info:
                        raise ValueError("Strategy %s not found in memory %s" % (strategy_id, memory_id))

                    strategy_type = strategy_info["memoryStrategyType"]  # Using normalized field
                    override_type = strategy_info.get("configuration", {}).get("type")

                    strategy_copy = copy.deepcopy(strategy)

                    if "configuration" in strategy_copy:
                        wrapped_config = self._wrap_configuration(
                            strategy_copy["configuration"], strategy_type, override_type
                        )
                        strategy_copy["configuration"] = wrapped_config

                    modify_list.append(strategy_copy)

                memory_strategies["modifyMemoryStrategies"] = modify_list  # Using old field name for input

            if delete_strategy_ids:
                delete_list = [{"memoryStrategyId": sid} for sid in delete_strategy_ids]  # Using old field name
                memory_strategies["deleteMemoryStrategies"] = delete_list  # Using old field name for input

            if not memory_strategies:
                raise ValueError("No strategy operations provided")

            response = self.gmcp_client.update_memory(
                memoryId=memory_id,
                memoryStrategies=memory_strategies,
                clientToken=str(uuid.uuid4()),  # Using old field names for input
            )

            logger.info("Updated memory strategies for: %s", memory_id)
            memory = self._normalize_memory_response(response["memory"])
            return memory

        except ClientError as e:
            logger.error("Failed to update memory strategies: %s", e)
            raise

    def update_memory_strategies_and_wait(
        self,
        memory_id: str,
        add_strategies: Optional[List[Dict[str, Any]]] = None,
        modify_strategies: Optional[List[Dict[str, Any]]] = None,
        delete_strategy_ids: Optional[List[str]] = None,
        max_wait: int = 300,
        poll_interval: int = 10,
    ) -> Dict[str, Any]:
        """Update memory strategies and wait for memory to return to ACTIVE state.

        This method handles the temporary CREATING state that occurs when
        updating strategies, preventing subsequent update errors.
        """
        # Update strategies
        self.update_memory_strategies(memory_id, add_strategies, modify_strategies, delete_strategy_ids)

        # Wait for memory to return to ACTIVE
        return self._wait_for_memory_active(memory_id, max_wait, poll_interval)

    def wait_for_memories(
        self, memory_id: str, namespace: str, test_query: str = "test", max_wait: int = 180, poll_interval: int = 15
    ) -> bool:
        """Wait for memory extraction to complete by polling.

        IMPORTANT LIMITATIONS:
        1. This method only works reliably on empty namespaces. If there are already
           existing memories in the namespace, this method may return True immediately
           even if new extractions haven't completed.
        2. Wildcards (*) are NOT supported in namespaces. You must provide the exact
           namespace path with all variables resolved (e.g., "support/facts/session-123"
           not "support/facts/*").

        For subsequent extractions in populated namespaces, use a fixed wait time:
            time.sleep(150)  # Wait 2.5 minutes for extraction

        Args:
            memory_id: Memory resource ID
            namespace: Exact namespace to check (no wildcards)
            test_query: Query to test with (default: "test")
            max_wait: Maximum seconds to wait (default: 180)
            poll_interval: Seconds between checks (default: 15)

        Returns:
            True if memories found, False if timeout

        Note:
            This method will be deprecated in future versions once the API
            provides extraction status or timestamps.
        """
        if "*" in namespace:
            logger.error("Wildcards are not supported in namespaces. Please provide exact namespace.")
            return False

        logger.warning(
            "wait_for_memories() only works reliably on empty namespaces. "
            "For populated namespaces, consider using a fixed wait time instead."
        )

        logger.info("Waiting for memory extraction in namespace: %s", namespace)
        start_time = time.time()
        service_errors = 0

        while time.time() - start_time < max_wait:
            elapsed = int(time.time() - start_time)

            try:
                memories = self.retrieve_memories(memory_id=memory_id, namespace=namespace, query=test_query, top_k=1)

                if memories:
                    logger.info("Memory extraction complete after %d seconds", elapsed)
                    return True

                # Reset service error count on successful call
                service_errors = 0

            except Exception as e:
                if "ServiceException" in str(e):
                    service_errors += 1
                    if service_errors >= 3:
                        logger.warning("Multiple service errors - the service may be experiencing issues")
                logger.debug("Retrieval attempt failed: %s", e)

            if time.time() - start_time < max_wait:
                time.sleep(poll_interval)

        logger.warning("No memories found after %d seconds", max_wait)
        if service_errors > 0:
            logger.info("Note: Encountered %d service errors during polling", service_errors)
        return False

    def add_strategy(self, memory_id: str, strategy: Dict[str, Any]) -> Dict[str, Any]:
        """Add a strategy to a memory (without waiting).

        WARNING: After adding a strategy, the memory enters CREATING state temporarily.
        Use add_*_strategy_and_wait() methods instead to avoid errors.

        Args:
            memory_id: Memory resource ID
            strategy: Strategy configuration dictionary

        Returns:
            Updated memory response
        """
        warnings.warn(
            "add_strategy() may leave memory in CREATING state. "
            "Use add_*_strategy_and_wait() methods to avoid subsequent errors.",
            UserWarning,
            stacklevel=2,
        )
        return self._add_strategy(memory_id, strategy)

    # Private methods

    def _normalize_memory_response(self, memory: Dict[str, Any]) -> Dict[str, Any]:
        """Normalize memory response to include both old and new field names.

        The API returns new field names but SDK users might expect old ones.
        This ensures compatibility by providing both.
        """
        # Ensure both versions of memory ID exist
        if "id" in memory and "memoryId" not in memory:
            memory["memoryId"] = memory["id"]
        elif "memoryId" in memory and "id" not in memory:
            memory["id"] = memory["memoryId"]

        # Ensure both versions of strategies exist
        if "strategies" in memory and "memoryStrategies" not in memory:
            memory["memoryStrategies"] = memory["strategies"]
        elif "memoryStrategies" in memory and "strategies" not in memory:
            memory["strategies"] = memory["memoryStrategies"]

        # Normalize strategies within memory
        if "strategies" in memory:
            normalized_strategies = []
            for strategy in memory["strategies"]:
                normalized = strategy.copy()

                # Ensure both field name versions exist for strategies
                if "strategyId" in strategy and "memoryStrategyId" not in normalized:
                    normalized["memoryStrategyId"] = strategy["strategyId"]
                elif "memoryStrategyId" in strategy and "strategyId" not in normalized:
                    normalized["strategyId"] = strategy["memoryStrategyId"]

                if "type" in strategy and "memoryStrategyType" not in normalized:
                    normalized["memoryStrategyType"] = strategy["type"]
                elif "memoryStrategyType" in strategy and "type" not in normalized:
                    normalized["type"] = strategy["memoryStrategyType"]

                normalized_strategies.append(normalized)

            memory["strategies"] = normalized_strategies
            memory["memoryStrategies"] = normalized_strategies

        return memory

    def _add_strategy(self, memory_id: str, strategy: Dict[str, Any]) -> Dict[str, Any]:
        """Internal method to add a single strategy."""
        return self.update_memory_strategies(memory_id=memory_id, add_strategies=[strategy])

    def _wait_for_memory_active(self, memory_id: str, max_wait: int, poll_interval: int) -> Dict[str, Any]:
        """Wait for memory to return to ACTIVE state after strategy update."""
        logger.info("Waiting for memory %s to return to ACTIVE state...", memory_id)

        start_time = time.time()
        while time.time() - start_time < max_wait:
            elapsed = int(time.time() - start_time)

            try:
                status = self.get_memory_status(memory_id)

                if status == MemoryStatus.ACTIVE.value:
                    logger.info("Memory %s is ACTIVE again (took %d seconds)", memory_id, elapsed)
                    response = self.gmcp_client.get_memory(memoryId=memory_id)  # Input uses old field name
                    memory = self._normalize_memory_response(response["memory"])
                    return memory
                elif status == MemoryStatus.FAILED.value:
                    response = self.gmcp_client.get_memory(memoryId=memory_id)  # Input uses old field name
                    failure_reason = response["memory"].get("failureReason", "Unknown")
                    raise RuntimeError("Memory update failed: %s" % failure_reason)
                else:
                    logger.debug("Memory status: %s (%d seconds elapsed)", status, elapsed)

            except ClientError as e:
                logger.error("Error checking memory status: %s", e)
                raise

            time.sleep(poll_interval)

        raise TimeoutError("Memory %s did not return to ACTIVE state within %d seconds" % (memory_id, max_wait))

    def _add_default_namespaces(self, strategies: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
        """Add default namespaces to strategies that don't have them."""
        processed = []

        for strategy in strategies:
            strategy_copy = copy.deepcopy(strategy)

            strategy_type_key = list(strategy.keys())[0]
            strategy_config = strategy_copy[strategy_type_key]

            if "namespaces" not in strategy_config:
                strategy_type = StrategyType(strategy_type_key)
                strategy_config["namespaces"] = DEFAULT_NAMESPACES.get(strategy_type, ["custom/{actorId}/{sessionId}"])

            self._validate_strategy_config(strategy_copy, strategy_type_key)

            processed.append(strategy_copy)

        return processed

    def _validate_namespace(self, namespace: str) -> bool:
        """Validate namespace format - basic check only."""
        # Only check for template variables in namespace definition
        # Note: Using memoryStrategyId (old name) as it's still used in input parameters
        if "{" in namespace and not (
            "{actorId}" in namespace or "{sessionId}" in namespace or "{memoryStrategyId}" in namespace
        ):
            logger.warning("Namespace with templates should contain valid variables: %s", namespace)

        return True

    def _validate_strategy_config(self, strategy: Dict[str, Any], strategy_type: str) -> None:
        """Validate strategy configuration parameters."""
        strategy_config = strategy[strategy_type]

        namespaces = strategy_config.get("namespaces", [])
        for namespace in namespaces:
            self._validate_namespace(namespace)

    def _wrap_configuration(
        self, config: Dict[str, Any], strategy_type: str, override_type: Optional[str] = None
    ) -> Dict[str, Any]:
        """Wrap configuration based on strategy type."""
        wrapped_config = {}

        if "extraction" in config:
            extraction = config["extraction"]

            if any(key in extraction for key in ["triggerEveryNMessages", "historicalContextWindowSize"]):
                strategy_type_enum = MemoryStrategyTypeEnum(strategy_type)

                if strategy_type == "SEMANTIC":
                    wrapped_config["extraction"] = {EXTRACTION_WRAPPER_KEYS[strategy_type_enum]: extraction}
                elif strategy_type == "USER_PREFERENCE":
                    wrapped_config["extraction"] = {EXTRACTION_WRAPPER_KEYS[strategy_type_enum]: extraction}
                elif strategy_type == "CUSTOM" and override_type:
                    override_enum = OverrideType(override_type)
                    if override_type in ["SEMANTIC_OVERRIDE", "USER_PREFERENCE_OVERRIDE"]:
                        wrapped_config["extraction"] = {
                            "customExtractionConfiguration": {CUSTOM_EXTRACTION_WRAPPER_KEYS[override_enum]: extraction}
                        }
            else:
                wrapped_config["extraction"] = extraction

        if "consolidation" in config:
            consolidation = config["consolidation"]

            raw_keys = ["triggerEveryNMessages", "appendToPrompt", "modelId"]
            if any(key in consolidation for key in raw_keys):
                if strategy_type == "SUMMARIZATION":
                    if "triggerEveryNMessages" in consolidation:
                        wrapped_config["consolidation"] = {
                            "summaryConsolidationConfiguration": {
                                "triggerEveryNMessages": consolidation["triggerEveryNMessages"]
                            }
                        }
                elif strategy_type == "CUSTOM" and override_type:
                    override_enum = OverrideType(override_type)
                    if override_enum in CUSTOM_CONSOLIDATION_WRAPPER_KEYS:
                        wrapped_config["consolidation"] = {
                            "customConsolidationConfiguration": {
                                CUSTOM_CONSOLIDATION_WRAPPER_KEYS[override_enum]: consolidation
                            }
                        }
            else:
                wrapped_config["consolidation"] = consolidation

        return wrapped_config

__init__(region_name=None)

Initialize the Memory client.

Source code in bedrock_agentcore/memory/client.py
41
42
43
44
45
46
47
48
49
50
51
52
def __init__(self, region_name: Optional[str] = None):
    """Initialize the Memory client."""
    self.region_name = region_name or boto3.Session().region_name or "us-west-2"

    self.gmcp_client = boto3.client("bedrock-agentcore-control", region_name=self.region_name)
    self.gmdp_client = boto3.client("bedrock-agentcore", region_name=self.region_name)

    logger.info(
        "Initialized MemoryClient for control plane: %s, data plane: %s",
        self.gmcp_client.meta.region_name,
        self.gmdp_client.meta.region_name,
    )

add_custom_semantic_strategy(memory_id, name, extraction_config, consolidation_config, description=None, namespaces=None)

Add a custom semantic strategy with prompts.

Parameters:

Name Type Description Default
memory_id str

Memory resource ID

required
name str

Strategy name

required
extraction_config Dict[str, Any]

Extraction configuration with prompt and model:

required
consolidation_config Dict[str, Any]

Consolidation configuration with prompt and model:

required
description Optional[str]

Optional description

None
namespaces Optional[List[str]]

Optional namespaces list

None
Source code in bedrock_agentcore/memory/client.py
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
def add_custom_semantic_strategy(
    self,
    memory_id: str,
    name: str,
    extraction_config: Dict[str, Any],
    consolidation_config: Dict[str, Any],
    description: Optional[str] = None,
    namespaces: Optional[List[str]] = None,
) -> Dict[str, Any]:
    """Add a custom semantic strategy with prompts.

    Args:
        memory_id: Memory resource ID
        name: Strategy name
        extraction_config: Extraction configuration with prompt and model:
            {"prompt": "...", "modelId": "..."}
        consolidation_config: Consolidation configuration with prompt and model:
            {"prompt": "...", "modelId": "..."}
        description: Optional description
        namespaces: Optional namespaces list
    """
    strategy = {
        StrategyType.CUSTOM.value: {
            "name": name,
            "configuration": {
                "semanticOverride": {
                    "extraction": {
                        "appendToPrompt": extraction_config["prompt"],
                        "modelId": extraction_config["modelId"],
                    },
                    "consolidation": {
                        "appendToPrompt": consolidation_config["prompt"],
                        "modelId": consolidation_config["modelId"],
                    },
                }
            },
        }
    }

    if description:
        strategy[StrategyType.CUSTOM.value]["description"] = description
    if namespaces:
        strategy[StrategyType.CUSTOM.value]["namespaces"] = namespaces

    return self._add_strategy(memory_id, strategy)

add_custom_semantic_strategy_and_wait(memory_id, name, extraction_config, consolidation_config, description=None, namespaces=None, max_wait=300, poll_interval=10)

Add a custom semantic strategy and wait for memory to return to ACTIVE state.

Source code in bedrock_agentcore/memory/client.py
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
def add_custom_semantic_strategy_and_wait(
    self,
    memory_id: str,
    name: str,
    extraction_config: Dict[str, Any],
    consolidation_config: Dict[str, Any],
    description: Optional[str] = None,
    namespaces: Optional[List[str]] = None,
    max_wait: int = 300,
    poll_interval: int = 10,
) -> Dict[str, Any]:
    """Add a custom semantic strategy and wait for memory to return to ACTIVE state."""
    self.add_custom_semantic_strategy(
        memory_id, name, extraction_config, consolidation_config, description, namespaces
    )
    return self._wait_for_memory_active(memory_id, max_wait, poll_interval)

add_semantic_strategy(memory_id, name, description=None, namespaces=None)

Add a semantic memory strategy.

Note: Configuration is no longer provided for built-in strategies as per API changes.

Source code in bedrock_agentcore/memory/client.py
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
def add_semantic_strategy(
    self,
    memory_id: str,
    name: str,
    description: Optional[str] = None,
    namespaces: Optional[List[str]] = None,
) -> Dict[str, Any]:
    """Add a semantic memory strategy.

    Note: Configuration is no longer provided for built-in strategies as per API changes.
    """
    strategy: Dict = {
        StrategyType.SEMANTIC.value: {
            "name": name,
        }
    }

    if description:
        strategy[StrategyType.SEMANTIC.value]["description"] = description
    if namespaces:
        strategy[StrategyType.SEMANTIC.value]["namespaces"] = namespaces

    return self._add_strategy(memory_id, strategy)

add_semantic_strategy_and_wait(memory_id, name, description=None, namespaces=None, max_wait=300, poll_interval=10)

Add a semantic strategy and wait for memory to return to ACTIVE state.

This addresses the issue where adding a strategy puts the memory into CREATING state temporarily, preventing subsequent operations.

Source code in bedrock_agentcore/memory/client.py
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
def add_semantic_strategy_and_wait(
    self,
    memory_id: str,
    name: str,
    description: Optional[str] = None,
    namespaces: Optional[List[str]] = None,
    max_wait: int = 300,
    poll_interval: int = 10,
) -> Dict[str, Any]:
    """Add a semantic strategy and wait for memory to return to ACTIVE state.

    This addresses the issue where adding a strategy puts the memory into
    CREATING state temporarily, preventing subsequent operations.
    """
    # Add the strategy
    self.add_semantic_strategy(memory_id, name, description, namespaces)

    # Wait for memory to return to ACTIVE
    return self._wait_for_memory_active(memory_id, max_wait, poll_interval)

add_strategy(memory_id, strategy)

Add a strategy to a memory (without waiting).

WARNING: After adding a strategy, the memory enters CREATING state temporarily. Use add_*_strategy_and_wait() methods instead to avoid errors.

Parameters:

Name Type Description Default
memory_id str

Memory resource ID

required
strategy Dict[str, Any]

Strategy configuration dictionary

required

Returns:

Type Description
Dict[str, Any]

Updated memory response

Source code in bedrock_agentcore/memory/client.py
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
def add_strategy(self, memory_id: str, strategy: Dict[str, Any]) -> Dict[str, Any]:
    """Add a strategy to a memory (without waiting).

    WARNING: After adding a strategy, the memory enters CREATING state temporarily.
    Use add_*_strategy_and_wait() methods instead to avoid errors.

    Args:
        memory_id: Memory resource ID
        strategy: Strategy configuration dictionary

    Returns:
        Updated memory response
    """
    warnings.warn(
        "add_strategy() may leave memory in CREATING state. "
        "Use add_*_strategy_and_wait() methods to avoid subsequent errors.",
        UserWarning,
        stacklevel=2,
    )
    return self._add_strategy(memory_id, strategy)

add_summary_strategy(memory_id, name, description=None, namespaces=None)

Add a summary memory strategy.

Note: Configuration is no longer provided for built-in strategies as per API changes.

Source code in bedrock_agentcore/memory/client.py
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
def add_summary_strategy(
    self,
    memory_id: str,
    name: str,
    description: Optional[str] = None,
    namespaces: Optional[List[str]] = None,
) -> Dict[str, Any]:
    """Add a summary memory strategy.

    Note: Configuration is no longer provided for built-in strategies as per API changes.
    """
    strategy: Dict = {
        StrategyType.SUMMARY.value: {
            "name": name,
        }
    }

    if description:
        strategy[StrategyType.SUMMARY.value]["description"] = description
    if namespaces:
        strategy[StrategyType.SUMMARY.value]["namespaces"] = namespaces

    return self._add_strategy(memory_id, strategy)

add_summary_strategy_and_wait(memory_id, name, description=None, namespaces=None, max_wait=300, poll_interval=10)

Add a summary strategy and wait for memory to return to ACTIVE state.

Source code in bedrock_agentcore/memory/client.py
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
def add_summary_strategy_and_wait(
    self,
    memory_id: str,
    name: str,
    description: Optional[str] = None,
    namespaces: Optional[List[str]] = None,
    max_wait: int = 300,
    poll_interval: int = 10,
) -> Dict[str, Any]:
    """Add a summary strategy and wait for memory to return to ACTIVE state."""
    self.add_summary_strategy(memory_id, name, description, namespaces)
    return self._wait_for_memory_active(memory_id, max_wait, poll_interval)

add_user_preference_strategy(memory_id, name, description=None, namespaces=None)

Add a user preference memory strategy.

Note: Configuration is no longer provided for built-in strategies as per API changes.

Source code in bedrock_agentcore/memory/client.py
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
def add_user_preference_strategy(
    self,
    memory_id: str,
    name: str,
    description: Optional[str] = None,
    namespaces: Optional[List[str]] = None,
) -> Dict[str, Any]:
    """Add a user preference memory strategy.

    Note: Configuration is no longer provided for built-in strategies as per API changes.
    """
    strategy: Dict = {
        StrategyType.USER_PREFERENCE.value: {
            "name": name,
        }
    }

    if description:
        strategy[StrategyType.USER_PREFERENCE.value]["description"] = description
    if namespaces:
        strategy[StrategyType.USER_PREFERENCE.value]["namespaces"] = namespaces

    return self._add_strategy(memory_id, strategy)

add_user_preference_strategy_and_wait(memory_id, name, description=None, namespaces=None, max_wait=300, poll_interval=10)

Add a user preference strategy and wait for memory to return to ACTIVE state.

Source code in bedrock_agentcore/memory/client.py
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
def add_user_preference_strategy_and_wait(
    self,
    memory_id: str,
    name: str,
    description: Optional[str] = None,
    namespaces: Optional[List[str]] = None,
    max_wait: int = 300,
    poll_interval: int = 10,
) -> Dict[str, Any]:
    """Add a user preference strategy and wait for memory to return to ACTIVE state."""
    self.add_user_preference_strategy(memory_id, name, description, namespaces)
    return self._wait_for_memory_active(memory_id, max_wait, poll_interval)

create_event(memory_id, actor_id, session_id, messages, event_timestamp=None, branch=None)

Save an event of an agent interaction or conversation with a user.

This is the basis of short-term memory. If you configured your Memory resource to have MemoryStrategies, then events that are saved in short-term memory via create_event will be used to extract long-term memory records.

Parameters:

Name Type Description Default
memory_id str

Memory resource ID

required
actor_id str

Actor identifier (could be id of your user or an agent)

required
session_id str

Session identifier (meant to logically group a series of events)

required
messages List[Tuple[str, str]]

List of (text, role) tuples. Role can be USER, ASSISTANT, TOOL, etc.

required
event_timestamp Optional[datetime]

timestamp for the entire event (not per message)

None
branch Optional[Dict[str, str]]

Optional branch info. For new branches: {"rootEventId": "...", "name": "..."} For continuing existing branch: {"name": "..."} or {"name": "...", "rootEventId": "..."} A branch is used when you want to have a different history of events.

None

Returns:

Type Description
Dict[str, Any]

Created event

Example

event = client.create_event( memory_id=memory.get("id"), actor_id="weatherWorrier", session_id="WeatherSession", messages=[ ("What's the weather?", "USER"), ("Today is sunny", "ASSISTANT") ] ) root_event_id = event.get("eventId") print(event)

Continue the conversation

event = client.create_event( memory_id=memory.get("id"), actor_id="weatherWorrier", session_id="WeatherSession", messages=[ ("How about the weather tomorrow", "USER"), ("Tomorrow is cold!", "ASSISTANT") ] ) print(event)

branch the conversation so that the previous message is not part of the history
(suppose you did not mean to ask about the weather tomorrow and want to undo
that, and replace with a new message)

event = client.create_event( memory_id=memory.get("id"), actor_id="weatherWorrier", session_id="WeatherSession", branch={"name": "differentWeatherQuestion", "rootEventId": root_event_id}, messages=[ ("How about the weather a year from now", "USER"), ("I can't predict that far into the future!", "ASSISTANT") ] ) print(event)

Source code in bedrock_agentcore/memory/client.py
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
def create_event(
    self,
    memory_id: str,
    actor_id: str,
    session_id: str,
    messages: List[Tuple[str, str]],
    event_timestamp: Optional[datetime] = None,
    branch: Optional[Dict[str, str]] = None,
) -> Dict[str, Any]:
    """Save an event of an agent interaction or conversation with a user.

    This is the basis of short-term memory. If you configured your Memory resource
    to have MemoryStrategies, then events that are saved in short-term memory via
    create_event will be used to extract long-term memory records.

    Args:
        memory_id: Memory resource ID
        actor_id: Actor identifier (could be id of your user or an agent)
        session_id: Session identifier (meant to logically group a series of events)
        messages: List of (text, role) tuples. Role can be USER, ASSISTANT, TOOL, etc.
        event_timestamp: timestamp for the entire event (not per message)
        branch: Optional branch info. For new branches: {"rootEventId": "...", "name": "..."}
               For continuing existing branch: {"name": "..."} or {"name": "...", "rootEventId": "..."}
               A branch is used when you want to have a different history of events.

    Returns:
        Created event

    Example:
        event = client.create_event(
            memory_id=memory.get("id"),
            actor_id="weatherWorrier",
            session_id="WeatherSession",
            messages=[
                ("What's the weather?", "USER"),
                ("Today is sunny", "ASSISTANT")
            ]
        )
        root_event_id = event.get("eventId")
        print(event)

        # Continue the conversation
        event = client.create_event(
            memory_id=memory.get("id"),
            actor_id="weatherWorrier",
            session_id="WeatherSession",
            messages=[
                ("How about the weather tomorrow", "USER"),
                ("Tomorrow is cold!", "ASSISTANT")
            ]
        )
        print(event)

        # branch the conversation so that the previous message is not part of the history
        # (suppose you did not mean to ask about the weather tomorrow and want to undo
        # that, and replace with a new message)
        event = client.create_event(
            memory_id=memory.get("id"),
            actor_id="weatherWorrier",
            session_id="WeatherSession",
            branch={"name": "differentWeatherQuestion", "rootEventId": root_event_id},
            messages=[
                ("How about the weather a year from now", "USER"),
                ("I can't predict that far into the future!", "ASSISTANT")
            ]
        )
        print(event)
    """
    try:
        if not messages:
            raise ValueError("At least one message is required")

        payload = []
        for msg in messages:
            if len(msg) != 2:
                raise ValueError("Each message must be (text, role)")

            text, role = msg

            try:
                role_enum = MessageRole(role.upper())
            except ValueError as err:
                raise ValueError(
                    "Invalid role '%s'. Must be one of: %s" % (role, ", ".join([r.value for r in MessageRole]))
                ) from err

            payload.append({"conversational": {"content": {"text": text}, "role": role_enum.value}})

        # Use provided timestamp or current time
        if event_timestamp is None:
            event_timestamp = datetime.utcnow()

        params = {
            "memoryId": memory_id,
            "actorId": actor_id,
            "sessionId": session_id,
            "eventTimestamp": event_timestamp,
            "payload": payload,
        }

        if branch:
            params["branch"] = branch

        response = self.gmdp_client.create_event(**params)

        event = response["event"]
        logger.info("Created event: %s", event["eventId"])

        return event

    except ClientError as e:
        logger.error("Failed to create event: %s", e)
        raise

create_memory(name, strategies=None, description=None, event_expiry_days=90, memory_execution_role_arn=None)

Create a memory with simplified configuration.

Source code in bedrock_agentcore/memory/client.py
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
def create_memory(
    self,
    name: str,
    strategies: Optional[List[Dict[str, Any]]] = None,
    description: Optional[str] = None,
    event_expiry_days: int = 90,
    memory_execution_role_arn: Optional[str] = None,
) -> Dict[str, Any]:
    """Create a memory with simplified configuration."""
    if strategies is None:
        strategies = []

    try:
        processed_strategies = self._add_default_namespaces(strategies)

        params = {
            "name": name,
            "eventExpiryDuration": event_expiry_days,
            "memoryStrategies": processed_strategies,  # Using old field name for input
            "clientToken": str(uuid.uuid4()),
        }

        if description is not None:
            params["description"] = description

        if memory_execution_role_arn is not None:
            params["memoryExecutionRoleArn"] = memory_execution_role_arn

        response = self.gmcp_client.create_memory(**params)

        memory = response["memory"]
        # Normalize response to handle new field names
        memory = self._normalize_memory_response(memory)

        logger.info("Created memory: %s", memory["memoryId"])
        return memory

    except ClientError as e:
        logger.error("Failed to create memory: %s", e)
        raise

create_memory_and_wait(name, strategies, description=None, event_expiry_days=90, memory_execution_role_arn=None, max_wait=300, poll_interval=10)

Create a memory and wait for it to become ACTIVE.

This method creates a memory and polls until it reaches ACTIVE status, providing a convenient way to ensure the memory is ready for use.

Parameters:

Name Type Description Default
name str

Name for the memory resource

required
strategies List[Dict[str, Any]]

List of strategy configurations

required
description Optional[str]

Optional description

None
event_expiry_days int

How long to retain events (default: 90 days)

90
memory_execution_role_arn Optional[str]

IAM role ARN for memory execution

None
max_wait int

Maximum seconds to wait (default: 300)

300
poll_interval int

Seconds between status checks (default: 10)

10

Returns:

Type Description
Dict[str, Any]

Created memory object in ACTIVE status

Raises:

Type Description
TimeoutError

If memory doesn't become ACTIVE within max_wait

RuntimeError

If memory creation fails

Source code in bedrock_agentcore/memory/client.py
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
def create_memory_and_wait(
    self,
    name: str,
    strategies: List[Dict[str, Any]],
    description: Optional[str] = None,
    event_expiry_days: int = 90,
    memory_execution_role_arn: Optional[str] = None,
    max_wait: int = 300,
    poll_interval: int = 10,
) -> Dict[str, Any]:
    """Create a memory and wait for it to become ACTIVE.

    This method creates a memory and polls until it reaches ACTIVE status,
    providing a convenient way to ensure the memory is ready for use.

    Args:
        name: Name for the memory resource
        strategies: List of strategy configurations
        description: Optional description
        event_expiry_days: How long to retain events (default: 90 days)
        memory_execution_role_arn: IAM role ARN for memory execution
        max_wait: Maximum seconds to wait (default: 300)
        poll_interval: Seconds between status checks (default: 10)

    Returns:
        Created memory object in ACTIVE status

    Raises:
        TimeoutError: If memory doesn't become ACTIVE within max_wait
        RuntimeError: If memory creation fails
    """
    # Create the memory
    memory = self.create_memory(
        name=name,
        strategies=strategies,
        description=description,
        event_expiry_days=event_expiry_days,
        memory_execution_role_arn=memory_execution_role_arn,
    )

    memory_id = memory.get("memoryId", memory.get("id"))  # Handle both field names
    if memory_id is None:
        memory_id = ""
    logger.info("Created memory %s, waiting for ACTIVE status...", memory_id)

    start_time = time.time()
    while time.time() - start_time < max_wait:
        elapsed = int(time.time() - start_time)

        try:
            status = self.get_memory_status(memory_id)

            if status == MemoryStatus.ACTIVE.value:
                logger.info("Memory %s is now ACTIVE (took %d seconds)", memory_id, elapsed)
                # Get fresh memory details
                response = self.gmcp_client.get_memory(memoryId=memory_id)  # Input uses old field name
                memory = self._normalize_memory_response(response["memory"])
                return memory
            elif status == MemoryStatus.FAILED.value:
                # Get failure reason if available
                response = self.gmcp_client.get_memory(memoryId=memory_id)  # Input uses old field name
                failure_reason = response["memory"].get("failureReason", "Unknown")
                raise RuntimeError("Memory creation failed: %s" % failure_reason)
            else:
                logger.debug("Memory status: %s (%d seconds elapsed)", status, elapsed)

        except ClientError as e:
            logger.error("Error checking memory status: %s", e)
            raise

        time.sleep(poll_interval)

    raise TimeoutError("Memory %s did not become ACTIVE within %d seconds" % (memory_id, max_wait))

delete_memory(memory_id)

Delete a memory resource.

Source code in bedrock_agentcore/memory/client.py
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
def delete_memory(self, memory_id: str) -> Dict[str, Any]:
    """Delete a memory resource."""
    try:
        response = self.gmcp_client.delete_memory(
            memoryId=memory_id, clientToken=str(uuid.uuid4())
        )  # Input uses old field name
        logger.info("Deleted memory: %s", memory_id)
        return response
    except ClientError as e:
        logger.error("Failed to delete memory: %s", e)
        raise

delete_memory_and_wait(memory_id, max_wait=300, poll_interval=10)

Delete a memory and wait for deletion to complete.

This method deletes a memory and polls until it's fully deleted, ensuring clean resource cleanup.

Parameters:

Name Type Description Default
memory_id str

Memory resource ID to delete

required
max_wait int

Maximum seconds to wait (default: 300)

300
poll_interval int

Seconds between checks (default: 10)

10

Returns:

Type Description
Dict[str, Any]

Final deletion response

Raises:

Type Description
TimeoutError

If deletion doesn't complete within max_wait

Source code in bedrock_agentcore/memory/client.py
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
def delete_memory_and_wait(self, memory_id: str, max_wait: int = 300, poll_interval: int = 10) -> Dict[str, Any]:
    """Delete a memory and wait for deletion to complete.

    This method deletes a memory and polls until it's fully deleted,
    ensuring clean resource cleanup.

    Args:
        memory_id: Memory resource ID to delete
        max_wait: Maximum seconds to wait (default: 300)
        poll_interval: Seconds between checks (default: 10)

    Returns:
        Final deletion response

    Raises:
        TimeoutError: If deletion doesn't complete within max_wait
    """
    # Initiate deletion
    response = self.delete_memory(memory_id)
    logger.info("Initiated deletion of memory %s", memory_id)

    start_time = time.time()
    while time.time() - start_time < max_wait:
        elapsed = int(time.time() - start_time)

        try:
            # Try to get the memory - if it doesn't exist, deletion is complete
            self.gmcp_client.get_memory(memoryId=memory_id)  # Input uses old field name
            logger.debug("Memory still exists, waiting... (%d seconds elapsed)", elapsed)

        except ClientError as e:
            if e.response["Error"]["Code"] == "ResourceNotFoundException":
                logger.info("Memory %s successfully deleted (took %d seconds)", memory_id, elapsed)
                return response
            else:
                logger.error("Error checking memory status: %s", e)
                raise

        time.sleep(poll_interval)

    raise TimeoutError("Memory %s was not deleted within %d seconds" % (memory_id, max_wait))

delete_strategy(memory_id, strategy_id)

Delete a strategy from a memory.

Source code in bedrock_agentcore/memory/client.py
1349
1350
1351
def delete_strategy(self, memory_id: str, strategy_id: str) -> Dict[str, Any]:
    """Delete a strategy from a memory."""
    return self.update_memory_strategies(memory_id=memory_id, delete_strategy_ids=[strategy_id])

fork_conversation(memory_id, actor_id, session_id, root_event_id, branch_name, new_messages, event_timestamp=None)

Fork a conversation from a specific event to create a new branch.

Source code in bedrock_agentcore/memory/client.py
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
def fork_conversation(
    self,
    memory_id: str,
    actor_id: str,
    session_id: str,
    root_event_id: str,
    branch_name: str,
    new_messages: List[Tuple[str, str]],
    event_timestamp: Optional[datetime] = None,
) -> Dict[str, Any]:
    """Fork a conversation from a specific event to create a new branch."""
    try:
        branch = {"rootEventId": root_event_id, "name": branch_name}

        event = self.create_event(
            memory_id=memory_id,
            actor_id=actor_id,
            session_id=session_id,
            messages=new_messages,
            branch=branch,
            event_timestamp=event_timestamp,
        )

        logger.info("Created branch '%s' from event %s", branch_name, root_event_id)
        return event

    except ClientError as e:
        logger.error("Failed to fork conversation: %s", e)
        raise

get_conversation_tree(memory_id, actor_id, session_id)

Get a tree structure of the conversation with all branches.

This method transforms a flat list of events into a hierarchical tree structure, providing visualization-ready data that would be complex to build from raw events. It handles: - Full pagination to get all events - Grouping by branches - Message summarization - Tree structure building

Returns:

Type Description
Dict[str, Any]

Dictionary representing the conversation tree structure

Source code in bedrock_agentcore/memory/client.py
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
def get_conversation_tree(self, memory_id: str, actor_id: str, session_id: str) -> Dict[str, Any]:
    """Get a tree structure of the conversation with all branches.

    This method transforms a flat list of events into a hierarchical tree structure,
    providing visualization-ready data that would be complex to build from raw events.
    It handles:
    - Full pagination to get all events
    - Grouping by branches
    - Message summarization
    - Tree structure building

    Returns:
        Dictionary representing the conversation tree structure
    """
    try:
        # Get all events - need to handle pagination for complete list
        all_events = []
        next_token = None

        while True:
            params = {"memoryId": memory_id, "actorId": actor_id, "sessionId": session_id, "maxResults": 100}

            if next_token:
                params["nextToken"] = next_token

            response = self.gmdp_client.list_events(**params)
            all_events.extend(response.get("events", []))

            next_token = response.get("nextToken")
            if not next_token:
                break

        # Build tree structure
        tree = {"session_id": session_id, "actor_id": actor_id, "main_branch": {"events": [], "branches": {}}}

        # Group events by branch
        for event in all_events:
            event_summary = {"eventId": event["eventId"], "timestamp": event["eventTimestamp"], "messages": []}

            # Extract message summaries
            if "payload" in event:
                for payload_item in event.get("payload", []):
                    if "conversational" in payload_item:
                        conv = payload_item["conversational"]
                        event_summary["messages"].append(
                            {"role": conv.get("role"), "text": conv.get("content", {}).get("text", "")[:50] + "..."}
                        )

            branch_info = event.get("branch")
            if branch_info:
                branch_name = branch_info["name"]
                root_event = branch_info.get("rootEventId")  # Use .get() to handle missing field

                if branch_name not in tree["main_branch"]["branches"]:
                    tree["main_branch"]["branches"][branch_name] = {"root_event_id": root_event, "events": []}

                tree["main_branch"]["branches"][branch_name]["events"].append(event_summary)
            else:
                tree["main_branch"]["events"].append(event_summary)

        logger.info("Built conversation tree with %d branches", len(tree["main_branch"]["branches"]))
        return tree

    except ClientError as e:
        logger.error("Failed to build conversation tree: %s", e)
        raise

get_last_k_turns(memory_id, actor_id, session_id, k=5, branch_name=None, include_branches=False, max_results=100)

Get the last K conversation turns.

A "turn" typically consists of a user message followed by assistant response(s). This method groups messages into logical turns for easier processing.

Returns:

Type Description
List[List[Dict[str, Any]]]

List of turns, where each turn is a list of message dictionaries

Source code in bedrock_agentcore/memory/client.py
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
def get_last_k_turns(
    self,
    memory_id: str,
    actor_id: str,
    session_id: str,
    k: int = 5,
    branch_name: Optional[str] = None,
    include_branches: bool = False,
    max_results: int = 100,
) -> List[List[Dict[str, Any]]]:
    """Get the last K conversation turns.

    A "turn" typically consists of a user message followed by assistant response(s).
    This method groups messages into logical turns for easier processing.

    Returns:
        List of turns, where each turn is a list of message dictionaries
    """
    try:
        # Use the new list_events method
        events = self.list_events(
            memory_id=memory_id,
            actor_id=actor_id,
            session_id=session_id,
            branch_name=branch_name,
            include_parent_events=False,
            max_results=max_results,
        )

        if not events:
            return []

        # Process events to group into turns
        turns = []
        current_turn = []

        # Process events in chronological order
        for _, event in enumerate(events):
            if "payload" in event and event["payload"]:
                for payload_item in event["payload"]:
                    if "conversational" in payload_item:
                        role = payload_item["conversational"].get("role")

                        # Start a new turn when we see a USER message and already have messages
                        if role == Role.USER.value and current_turn:
                            turns.append(current_turn)
                            current_turn = []

                        current_turn.append(payload_item["conversational"])

        # Don't forget the last turn
        if current_turn:
            turns.append(current_turn)

        # Return the last k turns
        if len(turns) > k:
            result = turns[-k:]  # Get last k turns
        else:
            result = turns

        return result

    except ClientError as e:
        logger.error("Failed to get last K turns: %s", e)
        raise

get_memory_status(memory_id)

Get current memory status.

Source code in bedrock_agentcore/memory/client.py
1050
1051
1052
1053
1054
1055
1056
1057
def get_memory_status(self, memory_id: str) -> str:
    """Get current memory status."""
    try:
        response = self.gmcp_client.get_memory(memoryId=memory_id)  # Input uses old field name
        return response["memory"]["status"]
    except ClientError as e:
        logger.error("Failed to get memory status: %s", e)
        raise

get_memory_strategies(memory_id)

Get all strategies for a memory.

Source code in bedrock_agentcore/memory/client.py
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
def get_memory_strategies(self, memory_id: str) -> List[Dict[str, Any]]:
    """Get all strategies for a memory."""
    try:
        response = self.gmcp_client.get_memory(memoryId=memory_id)  # Input uses old field name
        memory = response["memory"]

        # Handle both old and new field names in response
        strategies = memory.get("strategies", memory.get("memoryStrategies", []))

        # Normalize strategy fields
        normalized_strategies = []
        for strategy in strategies:
            # Create normalized version with both old and new field names
            normalized = strategy.copy()

            # Ensure both field name versions exist
            if "strategyId" in strategy and "memoryStrategyId" not in normalized:
                normalized["memoryStrategyId"] = strategy["strategyId"]
            elif "memoryStrategyId" in strategy and "strategyId" not in normalized:
                normalized["strategyId"] = strategy["memoryStrategyId"]

            if "type" in strategy and "memoryStrategyType" not in normalized:
                normalized["memoryStrategyType"] = strategy["type"]
            elif "memoryStrategyType" in strategy and "type" not in normalized:
                normalized["type"] = strategy["memoryStrategyType"]

            normalized_strategies.append(normalized)

        return normalized_strategies
    except ClientError as e:
        logger.error("Failed to get memory strategies: %s", e)
        raise

list_branch_events(memory_id, actor_id, session_id, branch_name=None, include_parent_events=False, max_results=100)

List events in a specific branch.

This method provides complex filtering and pagination that would require significant boilerplate code with raw boto3. It handles: - Automatic pagination across multiple API calls - Branch filtering with parent event inclusion logic - Main branch isolation (events without branch info)

Parameters:

Name Type Description Default
memory_id str

Memory resource ID

required
actor_id str

Actor identifier

required
session_id str

Session identifier

required
branch_name Optional[str]

Branch name (None for main branch)

None
include_parent_events bool

Whether to include events from parent branches

False
max_results int

Maximum events to return

100

Returns:

Type Description
List[Dict[str, Any]]

List of events in the branch

Source code in bedrock_agentcore/memory/client.py
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
def list_branch_events(
    self,
    memory_id: str,
    actor_id: str,
    session_id: str,
    branch_name: Optional[str] = None,
    include_parent_events: bool = False,
    max_results: int = 100,
) -> List[Dict[str, Any]]:
    """List events in a specific branch.

    This method provides complex filtering and pagination that would require
    significant boilerplate code with raw boto3. It handles:
    - Automatic pagination across multiple API calls
    - Branch filtering with parent event inclusion logic
    - Main branch isolation (events without branch info)

    Args:
        memory_id: Memory resource ID
        actor_id: Actor identifier
        session_id: Session identifier
        branch_name: Branch name (None for main branch)
        include_parent_events: Whether to include events from parent branches
        max_results: Maximum events to return

    Returns:
        List of events in the branch
    """
    try:
        params = {
            "memoryId": memory_id,
            "actorId": actor_id,
            "sessionId": session_id,
            "maxResults": min(100, max_results),
        }

        # Only add filter when we have a specific branch name
        if branch_name:
            params["filter"] = {"branch": {"name": branch_name, "includeParentBranches": include_parent_events}}

        response = self.gmdp_client.list_events(**params)
        events = response.get("events", [])

        # Handle pagination
        next_token = response.get("nextToken")
        while next_token and len(events) < max_results:
            params["nextToken"] = next_token
            params["maxResults"] = min(100, max_results - len(events))
            response = self.gmdp_client.list_events(**params)
            events.extend(response.get("events", []))
            next_token = response.get("nextToken")

        # Filter for main branch if no branch specified
        if not branch_name:
            events = [e for e in events if not e.get("branch")]

        logger.info("Retrieved %d events from branch '%s'", len(events), branch_name or "main")
        return events

    except ClientError as e:
        logger.error("Failed to list branch events: %s", e)
        raise

list_branches(memory_id, actor_id, session_id)

List all branches in a session.

This method handles pagination automatically and provides a structured view of all conversation branches, which would require complex pagination and grouping logic if done with raw boto3 calls.

Returns:

Type Description
List[Dict[str, Any]]

List of branch information including name and root event

Source code in bedrock_agentcore/memory/client.py
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
def list_branches(self, memory_id: str, actor_id: str, session_id: str) -> List[Dict[str, Any]]:
    """List all branches in a session.

    This method handles pagination automatically and provides a structured view
    of all conversation branches, which would require complex pagination and
    grouping logic if done with raw boto3 calls.

    Returns:
        List of branch information including name and root event
    """
    try:
        # Get all events - need to handle pagination for complete list
        all_events = []
        next_token = None

        while True:
            params = {"memoryId": memory_id, "actorId": actor_id, "sessionId": session_id, "maxResults": 100}

            if next_token:
                params["nextToken"] = next_token

            response = self.gmdp_client.list_events(**params)
            all_events.extend(response.get("events", []))

            next_token = response.get("nextToken")
            if not next_token:
                break

        branches = {}
        main_branch_events = []

        for event in all_events:
            branch_info = event.get("branch")
            if branch_info:
                branch_name = branch_info["name"]
                if branch_name not in branches:
                    branches[branch_name] = {
                        "name": branch_name,
                        "rootEventId": branch_info.get("rootEventId"),
                        "firstEventId": event["eventId"],
                        "eventCount": 1,
                        "created": event["eventTimestamp"],
                    }
                else:
                    branches[branch_name]["eventCount"] += 1
            else:
                main_branch_events.append(event)

        # Build result list
        result = []

        # Only add main branch if there are actual events
        if main_branch_events:
            result.append(
                {
                    "name": "main",
                    "rootEventId": None,
                    "firstEventId": main_branch_events[0]["eventId"],
                    "eventCount": len(main_branch_events),
                    "created": main_branch_events[0]["eventTimestamp"],
                }
            )

        # Add other branches
        result.extend(list(branches.values()))

        logger.info("Found %d branches in session %s", len(result), session_id)
        return result

    except ClientError as e:
        logger.error("Failed to list branches: %s", e)
        raise

list_events(memory_id, actor_id, session_id, branch_name=None, include_parent_events=False, max_results=100, include_payload=True)

List all events in a session with pagination support.

This method provides direct access to the raw events API, allowing developers to retrieve all events without the turn grouping logic of get_last_k_turns.

Parameters:

Name Type Description Default
memory_id str

Memory resource ID

required
actor_id str

Actor identifier

required
session_id str

Session identifier

required
branch_name Optional[str]

Optional branch name to filter events (None for all branches)

None
include_parent_events bool

Whether to include parent branch events (only applies with branch_name)

False
max_results int

Maximum number of events to return

100
include_payload bool

Whether to include event payloads in response

True

Returns:

Type Description
List[Dict[str, Any]]

List of event dictionaries in chronological order

Example
Get all events

events = client.list_events(memory_id, actor_id, session_id)

Get only main branch events

main_events = client.list_events(memory_id, actor_id, session_id, branch_name="main")

Get events from a specific branch

branch_events = client.list_events(memory_id, actor_id, session_id, branch_name="test-branch")

Source code in bedrock_agentcore/memory/client.py
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
def list_events(
    self,
    memory_id: str,
    actor_id: str,
    session_id: str,
    branch_name: Optional[str] = None,
    include_parent_events: bool = False,
    max_results: int = 100,
    include_payload: bool = True,
) -> List[Dict[str, Any]]:
    """List all events in a session with pagination support.

    This method provides direct access to the raw events API, allowing developers
    to retrieve all events without the turn grouping logic of get_last_k_turns.

    Args:
        memory_id: Memory resource ID
        actor_id: Actor identifier
        session_id: Session identifier
        branch_name: Optional branch name to filter events (None for all branches)
        include_parent_events: Whether to include parent branch events (only applies with branch_name)
        max_results: Maximum number of events to return
        include_payload: Whether to include event payloads in response

    Returns:
        List of event dictionaries in chronological order

    Example:
        # Get all events
        events = client.list_events(memory_id, actor_id, session_id)

        # Get only main branch events
        main_events = client.list_events(memory_id, actor_id, session_id, branch_name="main")

        # Get events from a specific branch
        branch_events = client.list_events(memory_id, actor_id, session_id, branch_name="test-branch")
    """
    try:
        all_events = []
        next_token = None

        while len(all_events) < max_results:
            params = {
                "memoryId": memory_id,
                "actorId": actor_id,
                "sessionId": session_id,
                "maxResults": min(100, max_results - len(all_events)),
            }

            if next_token:
                params["nextToken"] = next_token

            # Add branch filter if specified (but not for "main")
            if branch_name and branch_name != "main":
                params["filter"] = {"branch": {"name": branch_name, "includeParentBranches": include_parent_events}}

            response = self.gmdp_client.list_events(**params)

            events = response.get("events", [])
            all_events.extend(events)

            next_token = response.get("nextToken")
            if not next_token or len(all_events) >= max_results:
                break

        logger.info("Retrieved total of %d events", len(all_events))
        return all_events[:max_results]

    except ClientError as e:
        logger.error("Failed to list events: %s", e)
        raise

list_memories(max_results=100)

List all memories for the account.

Source code in bedrock_agentcore/memory/client.py
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
def list_memories(self, max_results: int = 100) -> List[Dict[str, Any]]:
    """List all memories for the account."""
    try:
        # Ensure max_results doesn't exceed API limit per request
        results_per_request = min(max_results, 100)

        response = self.gmcp_client.list_memories(maxResults=results_per_request)
        memories = response.get("memories", [])

        next_token = response.get("nextToken")
        while next_token and len(memories) < max_results:
            remaining = max_results - len(memories)
            results_per_request = min(remaining, 100)

            response = self.gmcp_client.list_memories(maxResults=results_per_request, nextToken=next_token)
            memories.extend(response.get("memories", []))
            next_token = response.get("nextToken")

        # Normalize memory summaries if they contain new field names
        normalized_memories = []
        for memory in memories[:max_results]:
            normalized = memory.copy()
            # Ensure both field name versions exist
            if "id" in memory and "memoryId" not in normalized:
                normalized["memoryId"] = memory["id"]
            elif "memoryId" in memory and "id" not in normalized:
                normalized["id"] = memory["memoryId"]
            normalized_memories.append(normalized)

        return normalized_memories

    except ClientError as e:
        logger.error("Failed to list memories: %s", e)
        raise

merge_branch_context(memory_id, actor_id, session_id, branch_name, include_parent=True)

Get all messages from a branch for context building.

Parameters:

Name Type Description Default
memory_id str

Memory resource ID

required
actor_id str

Actor identifier

required
session_id str

Session identifier

required
branch_name str

Branch to get context from

required
include_parent bool

Whether to include parent branch events

True

Returns:

Type Description
List[Dict[str, Any]]

List of all messages in chronological order

Source code in bedrock_agentcore/memory/client.py
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
def merge_branch_context(
    self, memory_id: str, actor_id: str, session_id: str, branch_name: str, include_parent: bool = True
) -> List[Dict[str, Any]]:
    """Get all messages from a branch for context building.

    Args:
        memory_id: Memory resource ID
        actor_id: Actor identifier
        session_id: Session identifier
        branch_name: Branch to get context from
        include_parent: Whether to include parent branch events

    Returns:
        List of all messages in chronological order
    """
    events = self.list_branch_events(
        memory_id=memory_id,
        actor_id=actor_id,
        session_id=session_id,
        branch_name=branch_name,
        include_parent_events=include_parent,
        max_results=100,
    )

    messages = []
    for event in events:
        if "payload" in event:
            for payload_item in event.get("payload", []):
                if "conversational" in payload_item:
                    conv = payload_item["conversational"]
                    messages.append(
                        {
                            "timestamp": event["eventTimestamp"],
                            "eventId": event["eventId"],
                            "branch": event.get("branch", {}).get("name", "main"),
                            "role": conv.get("role"),
                            "content": conv.get("content", {}).get("text", ""),
                        }
                    )

    # Sort by timestamp
    messages.sort(key=lambda x: x["timestamp"])

    logger.info("Retrieved %d messages from branch '%s'", len(messages), branch_name)
    return messages

modify_strategy(memory_id, strategy_id, description=None, namespaces=None, configuration=None)

Modify a strategy with full control over configuration.

Source code in bedrock_agentcore/memory/client.py
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
def modify_strategy(
    self,
    memory_id: str,
    strategy_id: str,
    description: Optional[str] = None,
    namespaces: Optional[List[str]] = None,
    configuration: Optional[Dict[str, Any]] = None,
) -> Dict[str, Any]:
    """Modify a strategy with full control over configuration."""
    modify_config: Dict = {"memoryStrategyId": strategy_id}  # Using old field name for input

    if description is not None:
        modify_config["description"] = description
    if namespaces is not None:
        modify_config["namespaces"] = namespaces
    if configuration is not None:
        modify_config["configuration"] = configuration

    return self.update_memory_strategies(memory_id=memory_id, modify_strategies=[modify_config])

process_turn(memory_id, actor_id, session_id, user_input, agent_response, event_timestamp=None, retrieval_namespace=None, retrieval_query=None, top_k=3)

DEPRECATED: Use retrieve_memories() and save_conversation() separately.

This method will be removed in v1.0.0.

Source code in bedrock_agentcore/memory/client.py
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
def process_turn(
    self,
    memory_id: str,
    actor_id: str,
    session_id: str,
    user_input: str,
    agent_response: str,
    event_timestamp: Optional[datetime] = None,
    retrieval_namespace: Optional[str] = None,
    retrieval_query: Optional[str] = None,
    top_k: int = 3,
) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]:
    """DEPRECATED: Use retrieve_memories() and save_conversation() separately.

    This method will be removed in v1.0.0.
    """
    warnings.warn(
        "process_turn() is deprecated and will be removed in v1.0.0. "
        "Use retrieve_memories() and save_conversation() separately, or use process_turn_with_llm().",
        DeprecationWarning,
        stacklevel=2,
    )

    retrieved_memories = []

    if retrieval_namespace:
        search_query = retrieval_query or user_input
        retrieved_memories = self.retrieve_memories(
            memory_id=memory_id, namespace=retrieval_namespace, query=search_query, top_k=top_k
        )

    event = self.save_turn(
        memory_id=memory_id,
        actor_id=actor_id,
        session_id=session_id,
        user_input=user_input,
        agent_response=agent_response,
        event_timestamp=event_timestamp,
    )

    return retrieved_memories, event

process_turn_with_llm(memory_id, actor_id, session_id, user_input, llm_callback, retrieval_namespace=None, retrieval_query=None, top_k=3, event_timestamp=None)

Complete conversation turn with LLM callback integration.

This method combines memory retrieval, LLM invocation, and response storage in a single call using a callback pattern.

Parameters:

Name Type Description Default
memory_id str

Memory resource ID

required
actor_id str

Actor identifier (e.g., "user-123")

required
session_id str

Session identifier

required
user_input str

The user's message

required
llm_callback Callable[[str, List[Dict[str, Any]]], str]

Function that takes (user_input, memories) and returns agent_response The callback receives the user input and retrieved memories, and should return the agent's response string

required
retrieval_namespace Optional[str]

Namespace to search for memories (optional)

None
retrieval_query Optional[str]

Custom search query (defaults to user_input)

None
top_k int

Number of memories to retrieve

3
event_timestamp Optional[datetime]

Optional timestamp for the event

None

Returns:

Type Description
Tuple[List[Dict[str, Any]], str, Dict[str, Any]]

Tuple of (retrieved_memories, agent_response, created_event)

Example

def my_llm(user_input: str, memories: List[Dict]) -> str: # Format context from memories context = "\n".join([m['content']['text'] for m in memories])

# Call your LLM (Bedrock, OpenAI, etc.)
response = bedrock.invoke_model(
    messages=[
        {"role": "system", "content": f"Context: {context}"},
        {"role": "user", "content": user_input}
    ]
)
return response['content']

memories, response, event = client.process_turn_with_llm( memory_id="mem-xyz", actor_id="user-123", session_id="session-456", user_input="What did we discuss yesterday?", llm_callback=my_llm, retrieval_namespace="support/facts/{sessionId}" )

Source code in bedrock_agentcore/memory/client.py
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
def process_turn_with_llm(
    self,
    memory_id: str,
    actor_id: str,
    session_id: str,
    user_input: str,
    llm_callback: Callable[[str, List[Dict[str, Any]]], str],
    retrieval_namespace: Optional[str] = None,
    retrieval_query: Optional[str] = None,
    top_k: int = 3,
    event_timestamp: Optional[datetime] = None,
) -> Tuple[List[Dict[str, Any]], str, Dict[str, Any]]:
    r"""Complete conversation turn with LLM callback integration.

    This method combines memory retrieval, LLM invocation, and response storage
    in a single call using a callback pattern.

    Args:
        memory_id: Memory resource ID
        actor_id: Actor identifier (e.g., "user-123")
        session_id: Session identifier
        user_input: The user's message
        llm_callback: Function that takes (user_input, memories) and returns agent_response
                     The callback receives the user input and retrieved memories,
                     and should return the agent's response string
        retrieval_namespace: Namespace to search for memories (optional)
        retrieval_query: Custom search query (defaults to user_input)
        top_k: Number of memories to retrieve
        event_timestamp: Optional timestamp for the event

    Returns:
        Tuple of (retrieved_memories, agent_response, created_event)

    Example:
        def my_llm(user_input: str, memories: List[Dict]) -> str:
            # Format context from memories
            context = "\\n".join([m['content']['text'] for m in memories])

            # Call your LLM (Bedrock, OpenAI, etc.)
            response = bedrock.invoke_model(
                messages=[
                    {"role": "system", "content": f"Context: {context}"},
                    {"role": "user", "content": user_input}
                ]
            )
            return response['content']

        memories, response, event = client.process_turn_with_llm(
            memory_id="mem-xyz",
            actor_id="user-123",
            session_id="session-456",
            user_input="What did we discuss yesterday?",
            llm_callback=my_llm,
            retrieval_namespace="support/facts/{sessionId}"
        )
    """
    # Step 1: Retrieve relevant memories
    retrieved_memories = []
    if retrieval_namespace:
        search_query = retrieval_query or user_input
        retrieved_memories = self.retrieve_memories(
            memory_id=memory_id, namespace=retrieval_namespace, query=search_query, top_k=top_k
        )
        logger.info("Retrieved %d memories for LLM context", len(retrieved_memories))

    # Step 2: Invoke LLM callback
    try:
        agent_response = llm_callback(user_input, retrieved_memories)
        if not isinstance(agent_response, str):
            raise ValueError("LLM callback must return a string response")
        logger.info("LLM callback generated response")
    except Exception as e:
        logger.error("LLM callback failed: %s", e)
        raise

    # Step 3: Save the conversation turn
    event = self.create_event(
        memory_id=memory_id,
        actor_id=actor_id,
        session_id=session_id,
        messages=[(user_input, "USER"), (agent_response, "ASSISTANT")],
        event_timestamp=event_timestamp,
    )

    logger.info("Completed full conversation turn with LLM")
    return retrieved_memories, agent_response, event

retrieve_memories(memory_id, namespace, query, actor_id=None, top_k=3)

Retrieve relevant memories from a namespace.

Note: Wildcards (*) are NOT supported in namespaces. You must provide the exact namespace path with all variables resolved.

Parameters:

Name Type Description Default
memory_id str

Memory resource ID

required
namespace str

Exact namespace path (no wildcards)

required
query str

Search query

required
actor_id Optional[str]

Optional actor ID (deprecated, use namespace)

None
top_k int

Number of results to return

3

Returns:

Type Description
List[Dict[str, Any]]

List of memory records

Example
Correct - exact namespace

memories = client.retrieve_memories( memory_id="mem-123", namespace="support/facts/session-456", query="customer preferences" )

Incorrect - wildcards not supported
memories = client.retrieve_memories(..., namespace="support/facts/*", ...)
Source code in bedrock_agentcore/memory/client.py
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
def retrieve_memories(
    self, memory_id: str, namespace: str, query: str, actor_id: Optional[str] = None, top_k: int = 3
) -> List[Dict[str, Any]]:
    """Retrieve relevant memories from a namespace.

    Note: Wildcards (*) are NOT supported in namespaces. You must provide the
    exact namespace path with all variables resolved.

    Args:
        memory_id: Memory resource ID
        namespace: Exact namespace path (no wildcards)
        query: Search query
        actor_id: Optional actor ID (deprecated, use namespace)
        top_k: Number of results to return

    Returns:
        List of memory records

    Example:
        # Correct - exact namespace
        memories = client.retrieve_memories(
            memory_id="mem-123",
            namespace="support/facts/session-456",
            query="customer preferences"
        )

        # Incorrect - wildcards not supported
        # memories = client.retrieve_memories(..., namespace="support/facts/*", ...)
    """
    if "*" in namespace:
        logger.error("Wildcards are not supported in namespaces. Please provide exact namespace.")
        return []

    try:
        # Let service handle all namespace validation
        response = self.gmdp_client.retrieve_memory_records(
            memoryId=memory_id, namespace=namespace, searchCriteria={"searchQuery": query, "topK": top_k}
        )

        memories = response.get("memoryRecordSummaries", [])
        logger.info("Retrieved %d memories from namespace: %s", len(memories), namespace)
        return memories

    except ClientError as e:
        error_code = e.response["Error"]["Code"]
        error_msg = e.response["Error"]["Message"]

        if error_code == "ResourceNotFoundException":
            logger.warning(
                "Memory or namespace not found. Ensure memory %s exists and namespace '%s' is configured",
                memory_id,
                namespace,
            )
        elif error_code == "ValidationException":
            logger.warning("Invalid search parameters: %s", error_msg)
        elif error_code == "ServiceException":
            logger.warning("Service error: %s. This may be temporary - try again later", error_msg)
        else:
            logger.warning("Memory retrieval failed (%s): %s", error_code, error_msg)

        return []

save_conversation(memory_id, actor_id, session_id, messages, event_timestamp=None, branch=None)

DEPRECATED: Use create_event() instead.

Parameters:

Name Type Description Default
memory_id str

Memory resource ID

required
actor_id str

Actor identifier

required
session_id str

Session identifier

required
messages List[Tuple[str, str]]

List of (text, role) tuples. Role can be USER, ASSISTANT, TOOL, etc.

required
event_timestamp Optional[datetime]

Optional timestamp for the entire event (not per message)

None
branch Optional[Dict[str, str]]

Optional branch info. For new branches: {"rootEventId": "...", "name": "..."} For continuing existing branch: {"name": "..."} or {"name": "...", "rootEventId": "..."}

None

Returns:

Type Description
Dict[str, Any]

Created event

Example
Save multi-turn conversation

event = client.save_conversation( memory_id="mem-xyz", actor_id="user-123", session_id="session-456", messages=[ ("What's the weather?", "USER"), ("And tomorrow?", "USER"), ("Checking weather...", "TOOL"), ("Today sunny, tomorrow rain", "ASSISTANT") ] )

Continue existing branch (only name required)

event = client.save_conversation( memory_id="mem-xyz", actor_id="user-123", session_id="session-456", messages=[("Continue conversation", "USER")], branch={"name": "existing-branch"} )

Source code in bedrock_agentcore/memory/client.py
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
def save_conversation(
    self,
    memory_id: str,
    actor_id: str,
    session_id: str,
    messages: List[Tuple[str, str]],
    event_timestamp: Optional[datetime] = None,
    branch: Optional[Dict[str, str]] = None,
) -> Dict[str, Any]:
    """DEPRECATED: Use create_event() instead.

    Args:
        memory_id: Memory resource ID
        actor_id: Actor identifier
        session_id: Session identifier
        messages: List of (text, role) tuples. Role can be USER, ASSISTANT, TOOL, etc.
        event_timestamp: Optional timestamp for the entire event (not per message)
        branch: Optional branch info. For new branches: {"rootEventId": "...", "name": "..."}
               For continuing existing branch: {"name": "..."} or {"name": "...", "rootEventId": "..."}

    Returns:
        Created event

    Example:
        # Save multi-turn conversation
        event = client.save_conversation(
            memory_id="mem-xyz",
            actor_id="user-123",
            session_id="session-456",
            messages=[
                ("What's the weather?", "USER"),
                ("And tomorrow?", "USER"),
                ("Checking weather...", "TOOL"),
                ("Today sunny, tomorrow rain", "ASSISTANT")
            ]
        )

        # Continue existing branch (only name required)
        event = client.save_conversation(
            memory_id="mem-xyz",
            actor_id="user-123",
            session_id="session-456",
            messages=[("Continue conversation", "USER")],
            branch={"name": "existing-branch"}
        )
    """
    try:
        if not messages:
            raise ValueError("At least one message is required")

        # Build payload
        payload = []

        for msg in messages:
            if len(msg) != 2:
                raise ValueError("Each message must be (text, role)")

            text, role = msg

            # Validate role
            try:
                role_enum = MessageRole(role.upper())
            except ValueError as err:
                raise ValueError(
                    "Invalid role '%s'. Must be one of: %s" % (role, ", ".join([r.value for r in MessageRole]))
                ) from err

            payload.append({"conversational": {"content": {"text": text}, "role": role_enum.value}})

        # Use provided timestamp or current time
        if event_timestamp is None:
            event_timestamp = datetime.utcnow()

        params = {
            "memoryId": memory_id,
            "actorId": actor_id,
            "sessionId": session_id,
            "eventTimestamp": event_timestamp,
            "payload": payload,
            "clientToken": str(uuid.uuid4()),
        }

        if branch:
            params["branch"] = branch

        response = self.gmdp_client.create_event(**params)

        event = response["event"]
        logger.info("Created event: %s", event["eventId"])

        return event

    except ClientError as e:
        logger.error("Failed to create event: %s", e)
        raise

save_turn(memory_id, actor_id, session_id, user_input, agent_response, event_timestamp=None)

DEPRECATED: Use save_conversation() for more flexibility.

This method will be removed in v1.0.0.

Source code in bedrock_agentcore/memory/client.py
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
def save_turn(
    self,
    memory_id: str,
    actor_id: str,
    session_id: str,
    user_input: str,
    agent_response: str,
    event_timestamp: Optional[datetime] = None,
) -> Dict[str, Any]:
    """DEPRECATED: Use save_conversation() for more flexibility.

    This method will be removed in v1.0.0.
    """
    warnings.warn(
        "save_turn() is deprecated and will be removed in v1.0.0. "
        "Use save_conversation() for flexible message handling.",
        DeprecationWarning,
        stacklevel=2,
    )

    messages = [(user_input, "USER"), (agent_response, "ASSISTANT")]

    return self.create_event(
        memory_id=memory_id,
        actor_id=actor_id,
        session_id=session_id,
        messages=messages,
        event_timestamp=event_timestamp,
    )

update_memory_strategies(memory_id, add_strategies=None, modify_strategies=None, delete_strategy_ids=None)

Update memory strategies - add, modify, or delete.

Source code in bedrock_agentcore/memory/client.py
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
def update_memory_strategies(
    self,
    memory_id: str,
    add_strategies: Optional[List[Dict[str, Any]]] = None,
    modify_strategies: Optional[List[Dict[str, Any]]] = None,
    delete_strategy_ids: Optional[List[str]] = None,
) -> Dict[str, Any]:
    """Update memory strategies - add, modify, or delete."""
    try:
        memory_strategies = {}

        if add_strategies:
            processed_add = self._add_default_namespaces(add_strategies)
            memory_strategies["addMemoryStrategies"] = processed_add  # Using old field name for input

        if modify_strategies:
            current_strategies = self.get_memory_strategies(memory_id)
            strategy_map = {s["memoryStrategyId"]: s for s in current_strategies}  # Using normalized field

            modify_list = []
            for strategy in modify_strategies:
                if "memoryStrategyId" not in strategy:  # Using old field name
                    raise ValueError("Each modify strategy must include memoryStrategyId")

                strategy_id = strategy["memoryStrategyId"]  # Using old field name
                strategy_info = strategy_map.get(strategy_id)

                if not strategy_info:
                    raise ValueError("Strategy %s not found in memory %s" % (strategy_id, memory_id))

                strategy_type = strategy_info["memoryStrategyType"]  # Using normalized field
                override_type = strategy_info.get("configuration", {}).get("type")

                strategy_copy = copy.deepcopy(strategy)

                if "configuration" in strategy_copy:
                    wrapped_config = self._wrap_configuration(
                        strategy_copy["configuration"], strategy_type, override_type
                    )
                    strategy_copy["configuration"] = wrapped_config

                modify_list.append(strategy_copy)

            memory_strategies["modifyMemoryStrategies"] = modify_list  # Using old field name for input

        if delete_strategy_ids:
            delete_list = [{"memoryStrategyId": sid} for sid in delete_strategy_ids]  # Using old field name
            memory_strategies["deleteMemoryStrategies"] = delete_list  # Using old field name for input

        if not memory_strategies:
            raise ValueError("No strategy operations provided")

        response = self.gmcp_client.update_memory(
            memoryId=memory_id,
            memoryStrategies=memory_strategies,
            clientToken=str(uuid.uuid4()),  # Using old field names for input
        )

        logger.info("Updated memory strategies for: %s", memory_id)
        memory = self._normalize_memory_response(response["memory"])
        return memory

    except ClientError as e:
        logger.error("Failed to update memory strategies: %s", e)
        raise

update_memory_strategies_and_wait(memory_id, add_strategies=None, modify_strategies=None, delete_strategy_ids=None, max_wait=300, poll_interval=10)

Update memory strategies and wait for memory to return to ACTIVE state.

This method handles the temporary CREATING state that occurs when updating strategies, preventing subsequent update errors.

Source code in bedrock_agentcore/memory/client.py
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
def update_memory_strategies_and_wait(
    self,
    memory_id: str,
    add_strategies: Optional[List[Dict[str, Any]]] = None,
    modify_strategies: Optional[List[Dict[str, Any]]] = None,
    delete_strategy_ids: Optional[List[str]] = None,
    max_wait: int = 300,
    poll_interval: int = 10,
) -> Dict[str, Any]:
    """Update memory strategies and wait for memory to return to ACTIVE state.

    This method handles the temporary CREATING state that occurs when
    updating strategies, preventing subsequent update errors.
    """
    # Update strategies
    self.update_memory_strategies(memory_id, add_strategies, modify_strategies, delete_strategy_ids)

    # Wait for memory to return to ACTIVE
    return self._wait_for_memory_active(memory_id, max_wait, poll_interval)

wait_for_memories(memory_id, namespace, test_query='test', max_wait=180, poll_interval=15)

Wait for memory extraction to complete by polling.

IMPORTANT LIMITATIONS: 1. This method only works reliably on empty namespaces. If there are already existing memories in the namespace, this method may return True immediately even if new extractions haven't completed. 2. Wildcards () are NOT supported in namespaces. You must provide the exact namespace path with all variables resolved (e.g., "support/facts/session-123" not "support/facts/").

For subsequent extractions in populated namespaces, use a fixed wait time: time.sleep(150) # Wait 2.5 minutes for extraction

Parameters:

Name Type Description Default
memory_id str

Memory resource ID

required
namespace str

Exact namespace to check (no wildcards)

required
test_query str

Query to test with (default: "test")

'test'
max_wait int

Maximum seconds to wait (default: 180)

180
poll_interval int

Seconds between checks (default: 15)

15

Returns:

Type Description
bool

True if memories found, False if timeout

Note

This method will be deprecated in future versions once the API provides extraction status or timestamps.

Source code in bedrock_agentcore/memory/client.py
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
def wait_for_memories(
    self, memory_id: str, namespace: str, test_query: str = "test", max_wait: int = 180, poll_interval: int = 15
) -> bool:
    """Wait for memory extraction to complete by polling.

    IMPORTANT LIMITATIONS:
    1. This method only works reliably on empty namespaces. If there are already
       existing memories in the namespace, this method may return True immediately
       even if new extractions haven't completed.
    2. Wildcards (*) are NOT supported in namespaces. You must provide the exact
       namespace path with all variables resolved (e.g., "support/facts/session-123"
       not "support/facts/*").

    For subsequent extractions in populated namespaces, use a fixed wait time:
        time.sleep(150)  # Wait 2.5 minutes for extraction

    Args:
        memory_id: Memory resource ID
        namespace: Exact namespace to check (no wildcards)
        test_query: Query to test with (default: "test")
        max_wait: Maximum seconds to wait (default: 180)
        poll_interval: Seconds between checks (default: 15)

    Returns:
        True if memories found, False if timeout

    Note:
        This method will be deprecated in future versions once the API
        provides extraction status or timestamps.
    """
    if "*" in namespace:
        logger.error("Wildcards are not supported in namespaces. Please provide exact namespace.")
        return False

    logger.warning(
        "wait_for_memories() only works reliably on empty namespaces. "
        "For populated namespaces, consider using a fixed wait time instead."
    )

    logger.info("Waiting for memory extraction in namespace: %s", namespace)
    start_time = time.time()
    service_errors = 0

    while time.time() - start_time < max_wait:
        elapsed = int(time.time() - start_time)

        try:
            memories = self.retrieve_memories(memory_id=memory_id, namespace=namespace, query=test_query, top_k=1)

            if memories:
                logger.info("Memory extraction complete after %d seconds", elapsed)
                return True

            # Reset service error count on successful call
            service_errors = 0

        except Exception as e:
            if "ServiceException" in str(e):
                service_errors += 1
                if service_errors >= 3:
                    logger.warning("Multiple service errors - the service may be experiencing issues")
            logger.debug("Retrieval attempt failed: %s", e)

        if time.time() - start_time < max_wait:
            time.sleep(poll_interval)

    logger.warning("No memories found after %d seconds", max_wait)
    if service_errors > 0:
        logger.info("Note: Encountered %d service errors during polling", service_errors)
    return False

MemoryControlPlaneClient

Client for Bedrock AgentCore Memory control plane operations.

Source code in bedrock_agentcore/memory/controlplane.py
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
class MemoryControlPlaneClient:
    """Client for Bedrock AgentCore Memory control plane operations."""

    def __init__(self, region_name: str = "us-west-2", environment: str = "prod"):
        """Initialize the Memory Control Plane client.

        Args:
            region_name: AWS region name
            environment: Environment name (prod, gamma, etc.)
        """
        self.region_name = region_name
        self.environment = environment

        self.endpoint = os.getenv(
            "BEDROCK_AGENTCORE_CONTROL_ENDPOINT", f"https://bedrock-agentcore-control.{region_name}.amazonaws.com"
        )

        service_name = os.getenv("BEDROCK_AGENTCORE_CONTROL_SERVICE", "bedrock-agentcore-control")
        self.client = boto3.client(service_name, region_name=self.region_name, endpoint_url=self.endpoint)

        logger.info("Initialized MemoryControlPlaneClient for %s in %s", environment, region_name)

    # ==================== MEMORY OPERATIONS ====================

    def create_memory(
        self,
        name: str,
        event_expiry_days: int = 90,
        description: Optional[str] = None,
        memory_execution_role_arn: Optional[str] = None,
        strategies: Optional[List[Dict[str, Any]]] = None,
        wait_for_active: bool = False,
        max_wait: int = 300,
        poll_interval: int = 10,
    ) -> Dict[str, Any]:
        """Create a memory resource with optional strategies.

        Args:
            name: Name for the memory resource
            event_expiry_days: How long to retain events (default: 90 days)
            description: Optional description
            memory_execution_role_arn: IAM role ARN for memory execution
            strategies: Optional list of strategy configurations
            wait_for_active: Whether to wait for memory to become ACTIVE
            max_wait: Maximum seconds to wait if wait_for_active is True
            poll_interval: Seconds between status checks if wait_for_active is True

        Returns:
            Created memory object
        """
        params = {
            "name": name,
            "eventExpiryDuration": event_expiry_days,
            "clientToken": str(uuid.uuid4()),
        }

        if description:
            params["description"] = description

        if memory_execution_role_arn:
            params["memoryExecutionRoleArn"] = memory_execution_role_arn

        if strategies:
            params["memoryStrategies"] = strategies

        try:
            response = self.client.create_memory(**params)
            memory = response["memory"]
            memory_id = memory["id"]

            logger.info("Created memory: %s", memory_id)

            if wait_for_active:
                return self._wait_for_memory_active(memory_id, max_wait, poll_interval)

            return memory

        except ClientError as e:
            logger.error("Failed to create memory: %s", e)
            raise

    def get_memory(self, memory_id: str, include_strategies: bool = True) -> Dict[str, Any]:
        """Get a memory resource by ID.

        Args:
            memory_id: Memory resource ID
            include_strategies: Whether to include strategy details in response

        Returns:
            Memory resource details
        """
        try:
            response = self.client.get_memory(memoryId=memory_id)
            memory = response["memory"]

            # Add strategy count
            strategies = memory.get("strategies", [])
            memory["strategyCount"] = len(strategies)

            # Remove strategies if not requested
            if not include_strategies and "strategies" in memory:
                del memory["strategies"]

            return memory

        except ClientError as e:
            logger.error("Failed to get memory: %s", e)
            raise

    def list_memories(self, max_results: int = 100) -> List[Dict[str, Any]]:
        """List all memories for the account with pagination support.

        Args:
            max_results: Maximum number of memories to return

        Returns:
            List of memory summaries
        """
        try:
            memories = []
            next_token = None

            while len(memories) < max_results:
                params = {"maxResults": min(100, max_results - len(memories))}
                if next_token:
                    params["nextToken"] = next_token

                response = self.client.list_memories(**params)
                batch = response.get("memories", [])
                memories.extend(batch)

                next_token = response.get("nextToken")
                if not next_token or len(memories) >= max_results:
                    break

            # Add strategy count to each memory summary
            for memory in memories:
                memory["strategyCount"] = 0  # List memories doesn't include strategies

            return memories[:max_results]

        except ClientError as e:
            logger.error("Failed to list memories: %s", e)
            raise

    def update_memory(
        self,
        memory_id: str,
        description: Optional[str] = None,
        event_expiry_days: Optional[int] = None,
        memory_execution_role_arn: Optional[str] = None,
        add_strategies: Optional[List[Dict[str, Any]]] = None,
        modify_strategies: Optional[List[Dict[str, Any]]] = None,
        delete_strategy_ids: Optional[List[str]] = None,
        wait_for_active: bool = False,
        max_wait: int = 300,
        poll_interval: int = 10,
    ) -> Dict[str, Any]:
        """Update a memory resource properties and/or strategies.

        Args:
            memory_id: Memory resource ID
            description: Optional new description
            event_expiry_days: Optional new event expiry duration
            memory_execution_role_arn: Optional new execution role ARN
            add_strategies: Optional list of strategies to add
            modify_strategies: Optional list of strategies to modify
            delete_strategy_ids: Optional list of strategy IDs to delete
            wait_for_active: Whether to wait for memory to become ACTIVE
            max_wait: Maximum seconds to wait if wait_for_active is True
            poll_interval: Seconds between status checks if wait_for_active is True

        Returns:
            Updated memory object
        """
        params: Dict = {
            "memoryId": memory_id,
            "clientToken": str(uuid.uuid4()),
        }

        # Add memory properties if provided
        if description is not None:
            params["description"] = description

        if event_expiry_days is not None:
            params["eventExpiryDuration"] = event_expiry_days

        if memory_execution_role_arn is not None:
            params["memoryExecutionRoleArn"] = memory_execution_role_arn

        # Add strategy operations if provided
        memory_strategies = {}

        if add_strategies:
            memory_strategies["addMemoryStrategies"] = add_strategies

        if modify_strategies:
            memory_strategies["modifyMemoryStrategies"] = modify_strategies

        if delete_strategy_ids:
            memory_strategies["deleteMemoryStrategies"] = [
                {"memoryStrategyId": strategy_id} for strategy_id in delete_strategy_ids
            ]

        if memory_strategies:
            params["memoryStrategies"] = memory_strategies

        try:
            response = self.client.update_memory(**params)
            memory = response["memory"]
            logger.info("Updated memory: %s", memory_id)

            if wait_for_active:
                return self._wait_for_memory_active(memory_id, max_wait, poll_interval)

            return memory

        except ClientError as e:
            logger.error("Failed to update memory: %s", e)
            raise

    def delete_memory(
        self,
        memory_id: str,
        wait_for_deletion: bool = False,
        wait_for_strategies: bool = False,  # Changed default to False
        max_wait: int = 300,
        poll_interval: int = 10,
    ) -> Dict[str, Any]:
        """Delete a memory resource.

        Args:
            memory_id: Memory resource ID to delete
            wait_for_deletion: Whether to wait for complete deletion
            wait_for_strategies: Whether to wait for strategies to become ACTIVE before deletion
            max_wait: Maximum seconds to wait if wait_for_deletion is True
            poll_interval: Seconds between checks if wait_for_deletion is True

        Returns:
            Deletion response
        """
        try:
            # If requested, wait for all strategies to become ACTIVE before deletion
            if wait_for_strategies:
                try:
                    memory = self.get_memory(memory_id)
                    strategies = memory.get("strategies", [])

                    # Check if any strategies are in a transitional state
                    transitional_strategies = [
                        s
                        for s in strategies
                        if s.get("status") not in [MemoryStatus.ACTIVE.value, MemoryStatus.FAILED.value]
                    ]

                    if transitional_strategies:
                        logger.info(
                            "Waiting for %d strategies to become ACTIVE before deletion", len(transitional_strategies)
                        )
                        self._wait_for_status(
                            memory_id=memory_id,
                            target_status=MemoryStatus.ACTIVE.value,
                            max_wait=max_wait,
                            poll_interval=poll_interval,
                            check_strategies=True,
                        )
                except Exception as e:
                    logger.warning("Error waiting for strategies to become ACTIVE: %s", e)

            # Now delete the memory
            response = self.client.delete_memory(memoryId=memory_id, clientToken=str(uuid.uuid4()))

            logger.info("Initiated deletion of memory: %s", memory_id)

            if not wait_for_deletion:
                return response

            # Wait for deletion to complete
            start_time = time.time()
            while time.time() - start_time < max_wait:
                try:
                    self.client.get_memory(memoryId=memory_id)
                    time.sleep(poll_interval)
                except ClientError as e:
                    if e.response["Error"]["Code"] == "ResourceNotFoundException":
                        logger.info("Memory %s successfully deleted", memory_id)
                        return response
                    raise

            raise TimeoutError(f"Memory {memory_id} was not deleted within {max_wait} seconds")

        except ClientError as e:
            logger.error("Failed to delete memory: %s", e)
            raise

    # ==================== STRATEGY OPERATIONS ====================

    def add_strategy(
        self,
        memory_id: str,
        strategy: Dict[str, Any],
        wait_for_active: bool = False,
        max_wait: int = 300,
        poll_interval: int = 10,
    ) -> Dict[str, Any]:
        """Add a strategy to a memory resource.

        Args:
            memory_id: Memory resource ID
            strategy: Strategy configuration dictionary
            wait_for_active: Whether to wait for strategy to become ACTIVE
            max_wait: Maximum seconds to wait if wait_for_active is True
            poll_interval: Seconds between status checks if wait_for_active is True

        Returns:
            Updated memory object with strategyId field
        """
        # Get the strategy type and name for identification
        strategy_type = list(strategy.keys())[0]  # e.g., 'semanticMemoryStrategy'
        strategy_name = strategy[strategy_type].get("name")

        logger.info("Adding strategy %s of type %s to memory %s", strategy_name, strategy_type, memory_id)

        # Use update_memory with add_strategies parameter but don't wait for memory
        memory = self.update_memory(
            memory_id=memory_id,
            add_strategies=[strategy],
            wait_for_active=False,  # Don't wait for memory, we'll check strategy specifically
        )

        # If we need to wait for the strategy to become active
        if wait_for_active:
            # First, get the memory again to ensure we have the latest state
            memory = self.get_memory(memory_id)

            # Find the newly added strategy by matching name
            strategies = memory.get("strategies", [])
            strategy_id = None

            for s in strategies:
                # Match by name since that's unique within a memory
                if s.get("name") == strategy_name:
                    strategy_id = s.get("strategyId")
                    logger.info("Found newly added strategy %s with ID %s", strategy_name, strategy_id)
                    break

            if strategy_id:
                return self._wait_for_strategy_active(memory_id, strategy_id, max_wait, poll_interval)
            else:
                logger.warning("Could not identify newly added strategy %s to wait for activation", strategy_name)

        return memory

    def get_strategy(self, memory_id: str, strategy_id: str) -> Dict[str, Any]:
        """Get a specific strategy from a memory resource.

        Args:
            memory_id: Memory resource ID
            strategy_id: Strategy ID

        Returns:
            Strategy details
        """
        try:
            memory = self.get_memory(memory_id)
            strategies = memory.get("strategies", [])

            for strategy in strategies:
                if strategy.get("strategyId") == strategy_id:
                    return strategy

            raise ValueError(f"Strategy {strategy_id} not found in memory {memory_id}")

        except ClientError as e:
            logger.error("Failed to get strategy: %s", e)
            raise

    def update_strategy(
        self,
        memory_id: str,
        strategy_id: str,
        description: Optional[str] = None,
        namespaces: Optional[List[str]] = None,
        configuration: Optional[Dict[str, Any]] = None,
        wait_for_active: bool = False,
        max_wait: int = 300,
        poll_interval: int = 10,
    ) -> Dict[str, Any]:
        """Update a strategy in a memory resource.

        Args:
            memory_id: Memory resource ID
            strategy_id: Strategy ID to update
            description: Optional new description
            namespaces: Optional new namespaces list
            configuration: Optional new configuration
            wait_for_active: Whether to wait for strategy to become ACTIVE
            max_wait: Maximum seconds to wait if wait_for_active is True
            poll_interval: Seconds between status checks if wait_for_active is True

        Returns:
            Updated memory object
        """
        # Note: API expects memoryStrategyId for input but returns strategyId in response
        modify_config: Dict = {"memoryStrategyId": strategy_id}

        if description is not None:
            modify_config["description"] = description

        if namespaces is not None:
            modify_config["namespaces"] = namespaces

        if configuration is not None:
            modify_config["configuration"] = configuration

        # Use update_memory with modify_strategies parameter but don't wait for memory
        memory = self.update_memory(
            memory_id=memory_id,
            modify_strategies=[modify_config],
            wait_for_active=False,  # Don't wait for memory, we'll check strategy specifically
        )

        # If we need to wait for the strategy to become active
        if wait_for_active:
            return self._wait_for_strategy_active(memory_id, strategy_id, max_wait, poll_interval)

        return memory

    def remove_strategy(
        self,
        memory_id: str,
        strategy_id: str,
        wait_for_active: bool = False,
        max_wait: int = 300,
        poll_interval: int = 10,
    ) -> Dict[str, Any]:
        """Remove a strategy from a memory resource.

        Args:
            memory_id: Memory resource ID
            strategy_id: Strategy ID to remove
            wait_for_active: Whether to wait for memory to become ACTIVE
            max_wait: Maximum seconds to wait if wait_for_active is True
            poll_interval: Seconds between status checks if wait_for_active is True

        Returns:
            Updated memory object
        """
        # For remove_strategy, we only need to wait for memory to be active
        # since the strategy will be gone
        return self.update_memory(
            memory_id=memory_id,
            delete_strategy_ids=[strategy_id],
            wait_for_active=wait_for_active,
            max_wait=max_wait,
            poll_interval=poll_interval,
        )

    # ==================== HELPER METHODS ====================

    def _wait_for_memory_active(self, memory_id: str, max_wait: int, poll_interval: int) -> Dict[str, Any]:
        """Wait for memory to return to ACTIVE state."""
        logger.info("Waiting for memory %s to become ACTIVE...", memory_id)
        return self._wait_for_status(
            memory_id=memory_id, target_status=MemoryStatus.ACTIVE.value, max_wait=max_wait, poll_interval=poll_interval
        )

    def _wait_for_strategy_active(
        self, memory_id: str, strategy_id: str, max_wait: int, poll_interval: int
    ) -> Dict[str, Any]:
        """Wait for specific memory strategy to become ACTIVE."""
        logger.info("Waiting for strategy %s to become ACTIVE (max wait: %d seconds)...", strategy_id, max_wait)

        start_time = time.time()
        last_status = None

        while time.time() - start_time < max_wait:
            try:
                memory = self.get_memory(memory_id)
                strategies = memory.get("strategies", [])

                for strategy in strategies:
                    if strategy.get("strategyId") == strategy_id:
                        status = strategy["status"]

                        # Log status changes
                        if status != last_status:
                            logger.info("Strategy %s status: %s", strategy_id, status)
                            last_status = status

                        if status == MemoryStatus.ACTIVE.value:
                            elapsed = time.time() - start_time
                            logger.info("Strategy %s is now ACTIVE (took %.1f seconds)", strategy_id, elapsed)
                            return memory
                        elif status == MemoryStatus.FAILED.value:
                            failure_reason = strategy.get("failureReason", "Unknown")
                            raise RuntimeError(f"Strategy {strategy_id} failed to activate: {failure_reason}")

                        break
                else:
                    logger.warning("Strategy %s not found in memory %s", strategy_id, memory_id)

                # Wait before checking again
                time.sleep(poll_interval)

            except ClientError as e:
                logger.error("Error checking strategy status: %s", e)
                raise

        elapsed = time.time() - start_time
        raise TimeoutError(
            f"Strategy {strategy_id} did not become ACTIVE within {max_wait} seconds (last status: {last_status})"
        )

    def _wait_for_status(
        self, memory_id: str, target_status: str, max_wait: int, poll_interval: int, check_strategies: bool = True
    ) -> Dict[str, Any]:
        """Generic method to wait for a memory to reach a specific status.

        Args:
            memory_id: The ID of the memory to check
            target_status: The status to wait for (e.g., "ACTIVE")
            max_wait: Maximum time to wait in seconds
            poll_interval: Time between status checks in seconds
            check_strategies: Whether to also check that all strategies are in the target status

        Returns:
            The memory object once it reaches the target status

        Raises:
            TimeoutError: If the memory doesn't reach the target status within max_wait
            RuntimeError: If the memory or any strategy reaches a FAILED state
        """
        logger.info("Waiting for memory %s to reach status %s...", memory_id, target_status)

        start_time = time.time()
        last_memory_status = None
        strategy_statuses = {}

        while time.time() - start_time < max_wait:
            try:
                memory = self.get_memory(memory_id)
                status = memory.get("status")

                # Log status changes for memory
                if status != last_memory_status:
                    logger.info("Memory %s status: %s", memory_id, status)
                    last_memory_status = status

                if status == target_status:
                    # Check if all strategies are also in the target status
                    if check_strategies and target_status == MemoryStatus.ACTIVE.value:
                        strategies = memory.get("strategies", [])
                        all_strategies_active = True

                        for strategy in strategies:
                            strategy_id = strategy.get("strategyId")
                            strategy_status = strategy.get("status")

                            # Log strategy status changes
                            if (
                                strategy_id not in strategy_statuses
                                or strategy_statuses[strategy_id] != strategy_status
                            ):
                                logger.info("Strategy %s status: %s", strategy_id, strategy_status)
                                strategy_statuses[strategy_id] = strategy_status

                            if strategy_status != target_status:
                                if strategy_status == MemoryStatus.FAILED.value:
                                    failure_reason = strategy.get("failureReason", "Unknown")
                                    raise RuntimeError(f"Strategy {strategy_id} failed: {failure_reason}")

                                all_strategies_active = False

                        if not all_strategies_active:
                            logger.info(
                                "Memory %s is %s but %d strategies are still processing",
                                memory_id,
                                target_status,
                                len([s for s in strategies if s.get("status") != target_status]),
                            )
                            time.sleep(poll_interval)
                            continue

                    elapsed = time.time() - start_time
                    logger.info(
                        "Memory %s and all strategies are now %s (took %.1f seconds)", memory_id, target_status, elapsed
                    )
                    return memory
                elif status == MemoryStatus.FAILED.value:
                    failure_reason = memory.get("failureReason", "Unknown")
                    raise RuntimeError(f"Memory operation failed: {failure_reason}")

                time.sleep(poll_interval)

            except ClientError as e:
                logger.error("Error checking memory status: %s", e)
                raise

        elapsed = time.time() - start_time
        raise TimeoutError(
            f"Memory {memory_id} did not reach status {target_status} within {max_wait} seconds "
            f"(elapsed: {elapsed:.1f}s)"
        )

__init__(region_name='us-west-2', environment='prod')

Initialize the Memory Control Plane client.

Parameters:

Name Type Description Default
region_name str

AWS region name

'us-west-2'
environment str

Environment name (prod, gamma, etc.)

'prod'
Source code in bedrock_agentcore/memory/controlplane.py
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
def __init__(self, region_name: str = "us-west-2", environment: str = "prod"):
    """Initialize the Memory Control Plane client.

    Args:
        region_name: AWS region name
        environment: Environment name (prod, gamma, etc.)
    """
    self.region_name = region_name
    self.environment = environment

    self.endpoint = os.getenv(
        "BEDROCK_AGENTCORE_CONTROL_ENDPOINT", f"https://bedrock-agentcore-control.{region_name}.amazonaws.com"
    )

    service_name = os.getenv("BEDROCK_AGENTCORE_CONTROL_SERVICE", "bedrock-agentcore-control")
    self.client = boto3.client(service_name, region_name=self.region_name, endpoint_url=self.endpoint)

    logger.info("Initialized MemoryControlPlaneClient for %s in %s", environment, region_name)

add_strategy(memory_id, strategy, wait_for_active=False, max_wait=300, poll_interval=10)

Add a strategy to a memory resource.

Parameters:

Name Type Description Default
memory_id str

Memory resource ID

required
strategy Dict[str, Any]

Strategy configuration dictionary

required
wait_for_active bool

Whether to wait for strategy to become ACTIVE

False
max_wait int

Maximum seconds to wait if wait_for_active is True

300
poll_interval int

Seconds between status checks if wait_for_active is True

10

Returns:

Type Description
Dict[str, Any]

Updated memory object with strategyId field

Source code in bedrock_agentcore/memory/controlplane.py
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
def add_strategy(
    self,
    memory_id: str,
    strategy: Dict[str, Any],
    wait_for_active: bool = False,
    max_wait: int = 300,
    poll_interval: int = 10,
) -> Dict[str, Any]:
    """Add a strategy to a memory resource.

    Args:
        memory_id: Memory resource ID
        strategy: Strategy configuration dictionary
        wait_for_active: Whether to wait for strategy to become ACTIVE
        max_wait: Maximum seconds to wait if wait_for_active is True
        poll_interval: Seconds between status checks if wait_for_active is True

    Returns:
        Updated memory object with strategyId field
    """
    # Get the strategy type and name for identification
    strategy_type = list(strategy.keys())[0]  # e.g., 'semanticMemoryStrategy'
    strategy_name = strategy[strategy_type].get("name")

    logger.info("Adding strategy %s of type %s to memory %s", strategy_name, strategy_type, memory_id)

    # Use update_memory with add_strategies parameter but don't wait for memory
    memory = self.update_memory(
        memory_id=memory_id,
        add_strategies=[strategy],
        wait_for_active=False,  # Don't wait for memory, we'll check strategy specifically
    )

    # If we need to wait for the strategy to become active
    if wait_for_active:
        # First, get the memory again to ensure we have the latest state
        memory = self.get_memory(memory_id)

        # Find the newly added strategy by matching name
        strategies = memory.get("strategies", [])
        strategy_id = None

        for s in strategies:
            # Match by name since that's unique within a memory
            if s.get("name") == strategy_name:
                strategy_id = s.get("strategyId")
                logger.info("Found newly added strategy %s with ID %s", strategy_name, strategy_id)
                break

        if strategy_id:
            return self._wait_for_strategy_active(memory_id, strategy_id, max_wait, poll_interval)
        else:
            logger.warning("Could not identify newly added strategy %s to wait for activation", strategy_name)

    return memory

create_memory(name, event_expiry_days=90, description=None, memory_execution_role_arn=None, strategies=None, wait_for_active=False, max_wait=300, poll_interval=10)

Create a memory resource with optional strategies.

Parameters:

Name Type Description Default
name str

Name for the memory resource

required
event_expiry_days int

How long to retain events (default: 90 days)

90
description Optional[str]

Optional description

None
memory_execution_role_arn Optional[str]

IAM role ARN for memory execution

None
strategies Optional[List[Dict[str, Any]]]

Optional list of strategy configurations

None
wait_for_active bool

Whether to wait for memory to become ACTIVE

False
max_wait int

Maximum seconds to wait if wait_for_active is True

300
poll_interval int

Seconds between status checks if wait_for_active is True

10

Returns:

Type Description
Dict[str, Any]

Created memory object

Source code in bedrock_agentcore/memory/controlplane.py
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
def create_memory(
    self,
    name: str,
    event_expiry_days: int = 90,
    description: Optional[str] = None,
    memory_execution_role_arn: Optional[str] = None,
    strategies: Optional[List[Dict[str, Any]]] = None,
    wait_for_active: bool = False,
    max_wait: int = 300,
    poll_interval: int = 10,
) -> Dict[str, Any]:
    """Create a memory resource with optional strategies.

    Args:
        name: Name for the memory resource
        event_expiry_days: How long to retain events (default: 90 days)
        description: Optional description
        memory_execution_role_arn: IAM role ARN for memory execution
        strategies: Optional list of strategy configurations
        wait_for_active: Whether to wait for memory to become ACTIVE
        max_wait: Maximum seconds to wait if wait_for_active is True
        poll_interval: Seconds between status checks if wait_for_active is True

    Returns:
        Created memory object
    """
    params = {
        "name": name,
        "eventExpiryDuration": event_expiry_days,
        "clientToken": str(uuid.uuid4()),
    }

    if description:
        params["description"] = description

    if memory_execution_role_arn:
        params["memoryExecutionRoleArn"] = memory_execution_role_arn

    if strategies:
        params["memoryStrategies"] = strategies

    try:
        response = self.client.create_memory(**params)
        memory = response["memory"]
        memory_id = memory["id"]

        logger.info("Created memory: %s", memory_id)

        if wait_for_active:
            return self._wait_for_memory_active(memory_id, max_wait, poll_interval)

        return memory

    except ClientError as e:
        logger.error("Failed to create memory: %s", e)
        raise

delete_memory(memory_id, wait_for_deletion=False, wait_for_strategies=False, max_wait=300, poll_interval=10)

Delete a memory resource.

Parameters:

Name Type Description Default
memory_id str

Memory resource ID to delete

required
wait_for_deletion bool

Whether to wait for complete deletion

False
wait_for_strategies bool

Whether to wait for strategies to become ACTIVE before deletion

False
max_wait int

Maximum seconds to wait if wait_for_deletion is True

300
poll_interval int

Seconds between checks if wait_for_deletion is True

10

Returns:

Type Description
Dict[str, Any]

Deletion response

Source code in bedrock_agentcore/memory/controlplane.py
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
def delete_memory(
    self,
    memory_id: str,
    wait_for_deletion: bool = False,
    wait_for_strategies: bool = False,  # Changed default to False
    max_wait: int = 300,
    poll_interval: int = 10,
) -> Dict[str, Any]:
    """Delete a memory resource.

    Args:
        memory_id: Memory resource ID to delete
        wait_for_deletion: Whether to wait for complete deletion
        wait_for_strategies: Whether to wait for strategies to become ACTIVE before deletion
        max_wait: Maximum seconds to wait if wait_for_deletion is True
        poll_interval: Seconds between checks if wait_for_deletion is True

    Returns:
        Deletion response
    """
    try:
        # If requested, wait for all strategies to become ACTIVE before deletion
        if wait_for_strategies:
            try:
                memory = self.get_memory(memory_id)
                strategies = memory.get("strategies", [])

                # Check if any strategies are in a transitional state
                transitional_strategies = [
                    s
                    for s in strategies
                    if s.get("status") not in [MemoryStatus.ACTIVE.value, MemoryStatus.FAILED.value]
                ]

                if transitional_strategies:
                    logger.info(
                        "Waiting for %d strategies to become ACTIVE before deletion", len(transitional_strategies)
                    )
                    self._wait_for_status(
                        memory_id=memory_id,
                        target_status=MemoryStatus.ACTIVE.value,
                        max_wait=max_wait,
                        poll_interval=poll_interval,
                        check_strategies=True,
                    )
            except Exception as e:
                logger.warning("Error waiting for strategies to become ACTIVE: %s", e)

        # Now delete the memory
        response = self.client.delete_memory(memoryId=memory_id, clientToken=str(uuid.uuid4()))

        logger.info("Initiated deletion of memory: %s", memory_id)

        if not wait_for_deletion:
            return response

        # Wait for deletion to complete
        start_time = time.time()
        while time.time() - start_time < max_wait:
            try:
                self.client.get_memory(memoryId=memory_id)
                time.sleep(poll_interval)
            except ClientError as e:
                if e.response["Error"]["Code"] == "ResourceNotFoundException":
                    logger.info("Memory %s successfully deleted", memory_id)
                    return response
                raise

        raise TimeoutError(f"Memory {memory_id} was not deleted within {max_wait} seconds")

    except ClientError as e:
        logger.error("Failed to delete memory: %s", e)
        raise

get_memory(memory_id, include_strategies=True)

Get a memory resource by ID.

Parameters:

Name Type Description Default
memory_id str

Memory resource ID

required
include_strategies bool

Whether to include strategy details in response

True

Returns:

Type Description
Dict[str, Any]

Memory resource details

Source code in bedrock_agentcore/memory/controlplane.py
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
def get_memory(self, memory_id: str, include_strategies: bool = True) -> Dict[str, Any]:
    """Get a memory resource by ID.

    Args:
        memory_id: Memory resource ID
        include_strategies: Whether to include strategy details in response

    Returns:
        Memory resource details
    """
    try:
        response = self.client.get_memory(memoryId=memory_id)
        memory = response["memory"]

        # Add strategy count
        strategies = memory.get("strategies", [])
        memory["strategyCount"] = len(strategies)

        # Remove strategies if not requested
        if not include_strategies and "strategies" in memory:
            del memory["strategies"]

        return memory

    except ClientError as e:
        logger.error("Failed to get memory: %s", e)
        raise

get_strategy(memory_id, strategy_id)

Get a specific strategy from a memory resource.

Parameters:

Name Type Description Default
memory_id str

Memory resource ID

required
strategy_id str

Strategy ID

required

Returns:

Type Description
Dict[str, Any]

Strategy details

Source code in bedrock_agentcore/memory/controlplane.py
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
def get_strategy(self, memory_id: str, strategy_id: str) -> Dict[str, Any]:
    """Get a specific strategy from a memory resource.

    Args:
        memory_id: Memory resource ID
        strategy_id: Strategy ID

    Returns:
        Strategy details
    """
    try:
        memory = self.get_memory(memory_id)
        strategies = memory.get("strategies", [])

        for strategy in strategies:
            if strategy.get("strategyId") == strategy_id:
                return strategy

        raise ValueError(f"Strategy {strategy_id} not found in memory {memory_id}")

    except ClientError as e:
        logger.error("Failed to get strategy: %s", e)
        raise

list_memories(max_results=100)

List all memories for the account with pagination support.

Parameters:

Name Type Description Default
max_results int

Maximum number of memories to return

100

Returns:

Type Description
List[Dict[str, Any]]

List of memory summaries

Source code in bedrock_agentcore/memory/controlplane.py
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
def list_memories(self, max_results: int = 100) -> List[Dict[str, Any]]:
    """List all memories for the account with pagination support.

    Args:
        max_results: Maximum number of memories to return

    Returns:
        List of memory summaries
    """
    try:
        memories = []
        next_token = None

        while len(memories) < max_results:
            params = {"maxResults": min(100, max_results - len(memories))}
            if next_token:
                params["nextToken"] = next_token

            response = self.client.list_memories(**params)
            batch = response.get("memories", [])
            memories.extend(batch)

            next_token = response.get("nextToken")
            if not next_token or len(memories) >= max_results:
                break

        # Add strategy count to each memory summary
        for memory in memories:
            memory["strategyCount"] = 0  # List memories doesn't include strategies

        return memories[:max_results]

    except ClientError as e:
        logger.error("Failed to list memories: %s", e)
        raise

remove_strategy(memory_id, strategy_id, wait_for_active=False, max_wait=300, poll_interval=10)

Remove a strategy from a memory resource.

Parameters:

Name Type Description Default
memory_id str

Memory resource ID

required
strategy_id str

Strategy ID to remove

required
wait_for_active bool

Whether to wait for memory to become ACTIVE

False
max_wait int

Maximum seconds to wait if wait_for_active is True

300
poll_interval int

Seconds between status checks if wait_for_active is True

10

Returns:

Type Description
Dict[str, Any]

Updated memory object

Source code in bedrock_agentcore/memory/controlplane.py
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
def remove_strategy(
    self,
    memory_id: str,
    strategy_id: str,
    wait_for_active: bool = False,
    max_wait: int = 300,
    poll_interval: int = 10,
) -> Dict[str, Any]:
    """Remove a strategy from a memory resource.

    Args:
        memory_id: Memory resource ID
        strategy_id: Strategy ID to remove
        wait_for_active: Whether to wait for memory to become ACTIVE
        max_wait: Maximum seconds to wait if wait_for_active is True
        poll_interval: Seconds between status checks if wait_for_active is True

    Returns:
        Updated memory object
    """
    # For remove_strategy, we only need to wait for memory to be active
    # since the strategy will be gone
    return self.update_memory(
        memory_id=memory_id,
        delete_strategy_ids=[strategy_id],
        wait_for_active=wait_for_active,
        max_wait=max_wait,
        poll_interval=poll_interval,
    )

update_memory(memory_id, description=None, event_expiry_days=None, memory_execution_role_arn=None, add_strategies=None, modify_strategies=None, delete_strategy_ids=None, wait_for_active=False, max_wait=300, poll_interval=10)

Update a memory resource properties and/or strategies.

Parameters:

Name Type Description Default
memory_id str

Memory resource ID

required
description Optional[str]

Optional new description

None
event_expiry_days Optional[int]

Optional new event expiry duration

None
memory_execution_role_arn Optional[str]

Optional new execution role ARN

None
add_strategies Optional[List[Dict[str, Any]]]

Optional list of strategies to add

None
modify_strategies Optional[List[Dict[str, Any]]]

Optional list of strategies to modify

None
delete_strategy_ids Optional[List[str]]

Optional list of strategy IDs to delete

None
wait_for_active bool

Whether to wait for memory to become ACTIVE

False
max_wait int

Maximum seconds to wait if wait_for_active is True

300
poll_interval int

Seconds between status checks if wait_for_active is True

10

Returns:

Type Description
Dict[str, Any]

Updated memory object

Source code in bedrock_agentcore/memory/controlplane.py
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
def update_memory(
    self,
    memory_id: str,
    description: Optional[str] = None,
    event_expiry_days: Optional[int] = None,
    memory_execution_role_arn: Optional[str] = None,
    add_strategies: Optional[List[Dict[str, Any]]] = None,
    modify_strategies: Optional[List[Dict[str, Any]]] = None,
    delete_strategy_ids: Optional[List[str]] = None,
    wait_for_active: bool = False,
    max_wait: int = 300,
    poll_interval: int = 10,
) -> Dict[str, Any]:
    """Update a memory resource properties and/or strategies.

    Args:
        memory_id: Memory resource ID
        description: Optional new description
        event_expiry_days: Optional new event expiry duration
        memory_execution_role_arn: Optional new execution role ARN
        add_strategies: Optional list of strategies to add
        modify_strategies: Optional list of strategies to modify
        delete_strategy_ids: Optional list of strategy IDs to delete
        wait_for_active: Whether to wait for memory to become ACTIVE
        max_wait: Maximum seconds to wait if wait_for_active is True
        poll_interval: Seconds between status checks if wait_for_active is True

    Returns:
        Updated memory object
    """
    params: Dict = {
        "memoryId": memory_id,
        "clientToken": str(uuid.uuid4()),
    }

    # Add memory properties if provided
    if description is not None:
        params["description"] = description

    if event_expiry_days is not None:
        params["eventExpiryDuration"] = event_expiry_days

    if memory_execution_role_arn is not None:
        params["memoryExecutionRoleArn"] = memory_execution_role_arn

    # Add strategy operations if provided
    memory_strategies = {}

    if add_strategies:
        memory_strategies["addMemoryStrategies"] = add_strategies

    if modify_strategies:
        memory_strategies["modifyMemoryStrategies"] = modify_strategies

    if delete_strategy_ids:
        memory_strategies["deleteMemoryStrategies"] = [
            {"memoryStrategyId": strategy_id} for strategy_id in delete_strategy_ids
        ]

    if memory_strategies:
        params["memoryStrategies"] = memory_strategies

    try:
        response = self.client.update_memory(**params)
        memory = response["memory"]
        logger.info("Updated memory: %s", memory_id)

        if wait_for_active:
            return self._wait_for_memory_active(memory_id, max_wait, poll_interval)

        return memory

    except ClientError as e:
        logger.error("Failed to update memory: %s", e)
        raise

update_strategy(memory_id, strategy_id, description=None, namespaces=None, configuration=None, wait_for_active=False, max_wait=300, poll_interval=10)

Update a strategy in a memory resource.

Parameters:

Name Type Description Default
memory_id str

Memory resource ID

required
strategy_id str

Strategy ID to update

required
description Optional[str]

Optional new description

None
namespaces Optional[List[str]]

Optional new namespaces list

None
configuration Optional[Dict[str, Any]]

Optional new configuration

None
wait_for_active bool

Whether to wait for strategy to become ACTIVE

False
max_wait int

Maximum seconds to wait if wait_for_active is True

300
poll_interval int

Seconds between status checks if wait_for_active is True

10

Returns:

Type Description
Dict[str, Any]

Updated memory object

Source code in bedrock_agentcore/memory/controlplane.py
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
def update_strategy(
    self,
    memory_id: str,
    strategy_id: str,
    description: Optional[str] = None,
    namespaces: Optional[List[str]] = None,
    configuration: Optional[Dict[str, Any]] = None,
    wait_for_active: bool = False,
    max_wait: int = 300,
    poll_interval: int = 10,
) -> Dict[str, Any]:
    """Update a strategy in a memory resource.

    Args:
        memory_id: Memory resource ID
        strategy_id: Strategy ID to update
        description: Optional new description
        namespaces: Optional new namespaces list
        configuration: Optional new configuration
        wait_for_active: Whether to wait for strategy to become ACTIVE
        max_wait: Maximum seconds to wait if wait_for_active is True
        poll_interval: Seconds between status checks if wait_for_active is True

    Returns:
        Updated memory object
    """
    # Note: API expects memoryStrategyId for input but returns strategyId in response
    modify_config: Dict = {"memoryStrategyId": strategy_id}

    if description is not None:
        modify_config["description"] = description

    if namespaces is not None:
        modify_config["namespaces"] = namespaces

    if configuration is not None:
        modify_config["configuration"] = configuration

    # Use update_memory with modify_strategies parameter but don't wait for memory
    memory = self.update_memory(
        memory_id=memory_id,
        modify_strategies=[modify_config],
        wait_for_active=False,  # Don't wait for memory, we'll check strategy specifically
    )

    # If we need to wait for the strategy to become active
    if wait_for_active:
        return self._wait_for_strategy_active(memory_id, strategy_id, max_wait, poll_interval)

    return memory