AgentCore Code Interpreter Quickstart¶
AgentCore Code Interpreter enables your agents to execute Python code in a secure, managed environment. The agent can perform calculations, analyze data, generate visualizations, and validate answers through code execution.
Prerequisites¶
Before you start, ensure you have:
- AWS Account with credentials configured. See instructions below.
- Python 3.10+ installed
- Boto3 installed
- IAM Execution Role with the required permissions (see below)
- Model access: Anthropic Claude Sonnet 4.0 enabled in the Amazon Bedrock console. For information about using a different model with the Strands Agents see the Model Providers section in the Strands Agents SDK documentation.
- AWS Region where AgentCore is available
Credentials configuration (if not already configured)¶
Verify your AWS Credentials
Confirm your AWS credentials are configured:
aws sts get-caller-identity
If this command fails, configure your credentials. See Configuration and credential file settings in the AWS CLI documentation.
Attach Required Permissions
Your IAM user or role needs permissions to use Code Interpreter. Attach this policy to your IAM identity:
Note: Replace <region>
with your chosen region (e.g., us-west-2
) and <account_id>
with your AWS account ID in the policy below:
{
"Version":"2012-10-17",
"Statement": [
{
"Sid": "BedrockAgentCoreCodeInterpreterFullAccess",
"Effect": "Allow",
"Action": [
"bedrock-agentcore:CreateCodeInterpreter",
"bedrock-agentcore:StartCodeInterpreterSession",
"bedrock-agentcore:InvokeCodeInterpreter",
"bedrock-agentcore:StopCodeInterpreterSession",
"bedrock-agentcore:DeleteCodeInterpreter",
"bedrock-agentcore:ListCodeInterpreters",
"bedrock-agentcore:GetCodeInterpreter",
"bedrock-agentcore:GetCodeInterpreterSession",
"bedrock-agentcore:ListCodeInterpreterSessions"
],
"Resource": "arn:aws:bedrock-agentcore:<region>:<account_id>:code-interpreter/*"
}
]
}
To attach this policy:
- Navigate to the IAM Console
- Find your user or role (the one returned by
aws sts get-caller-identity
) - Click "Add permissions" → "Create inline policy"
- Switch to JSON view and paste the policy above
- Name it
AgentCoreCodeInterpreterAccess
and save
Note: If you're deploying agents to AgentCore Runtime (not covered in this guide), you'll also need to create an IAM execution role with a service trust policy. See the AgentCore Runtime QuickStart Guide for those requirements.
Using Code Interpreter via AWS Strands¶
Step 1: Install Dependencies¶
Create a project folder and install the required packages:
mkdir agentcore-tools-quickstart
cd agentcore-tools-quickstart
python3 -m venv .venv
source .venv/bin/activate
On Windows, use: .venv\Scripts\activate
Install the required packages:
pip install bedrock-agentcore strands-agents strands-agents-tools
These packages provide:
bedrock-agentcore
: The SDK for AgentCore tools including Code Interpreterstrands-agents
: The Strands agent frameworkstrands-agents-tools
: The tools that the Strands agent framework offers
Step 2: Create Your Agent with Code Interpreter¶
Create a file named code_interpreter_agent.py
and add the following code:
from strands import Agent
from strands_tools.code_interpreter import AgentCoreCodeInterpreter
# Initialize the Code Interpreter tool
code_interpreter_tool = AgentCoreCodeInterpreter(region="us-west-2")
# Define the agent's system prompt
SYSTEM_PROMPT = """You are an AI assistant that validates answers through code execution.
When asked about code, algorithms, or calculations, write Python code to verify your answers."""
# Create an agent with the Code Interpreter tool
agent = Agent(
tools=[code_interpreter_tool.code_interpreter],
system_prompt=SYSTEM_PROMPT
)
# Test the agent with a sample prompt
prompt = "Calculate the first 10 Fibonacci numbers."
print(f"\\nPrompt: {prompt}\\n")
response = agent(prompt)
print(response.message["content"][0]["text"])
This code:
- Initializes the Code Interpreter tool for the
us-west-2
region - Creates an agent configured to use code execution for validation
- Sends a prompt asking the agent to calculate Fibonacci numbers
- Prints the agent's response
Step 3: Run the Agent¶
Execute the script:
python code_interpreter_agent.py
Expected Output: You should see the agent's response containing the first 10 Fibonacci numbers. The agent will write Python code to calculate the sequence and return both the code and the results.
If you encounter errors, verify:
- Your IAM role has the correct permissions and trust policy
- You have model access enabled in the Amazon Bedrock console
- Your AWS credentials are properly configured
Using Code Interpreter Directly¶
Step 1: Choose Your Approach & Install Dependencies¶
You can use Code Interpreter directly without an agent framework. This is useful when you want to execute specific code snippets programmatically. AgentCore provides two ways to interact with Code Interpreter: using the high-level SDK client or using boto3 directly.
- SDK Client: The
bedrock_agentcore
SDK provides a simplified interface that handles session management details. Use this approach for most applications. - Boto3 Client: The AWS SDK gives you direct access to the Code Interpreter API operations. Use this approach when you need fine-grained control over session configuration or want to integrate with existing boto3-based applications.
Create a project folder (if you didn't create one before) and install the required packages:
mkdir agentcore-tools-quickstart
cd agentcore-tools-quickstart
python3 -m venv .venv
source .venv/bin/activate
On Windows, use: .venv\Scripts\activate
Install the required packages:
pip install bedrock-agentcore boto3
These packages provide:
bedrock-agentcore
: The SDK for AgentCore tools including Code Interpreterboto3
: AWS SDK for Python (Boto3) to create, configure, and manage AWS services
Step 2: Execute Code with the SDK Client¶
Create a file named direct_code_execution_sdk.py
and add the following code:
from bedrock_agentcore.tools.code_interpreter_client import CodeInterpreter
import json
# Initialize the Code Interpreter client for us-west-2
code_client = CodeInterpreter('us-west-2')
# Start a Code Interpreter session
code_client.start()
try:
# Execute Python code
response = code_client.invoke("executeCode", {
"language": "python",
"code": 'print("Hello World!!!")'
})
# Process and print the response
for event in response["stream"]:
print(json.dumps(event["result"], indent=2))
finally:
# Always clean up the session
code_client.stop()
This code:
- Creates a Code Interpreter client for your region
- Starts a session (required before executing code)
- Executes Python code and streams the results with full event details
- Stops the session to clean up resources
Run the script:
python direct_code_execution_sdk.py
Expected Output: You should see a JSON response containing the execution result with Hello World!!!
in the output content.
Step 3: Execute Code with Boto3¶
Create a file named direct_code_execution_boto3.py
and add the following code:
import boto3
import json
# Code to execute
code_to_execute = """
print("Hello World!!!")
"""
# Initialize the bedrock-agentcore client
client = boto3.client(
"bedrock-agentcore",
region_name="us-west-2"
)
# Start a Code Interpreter session
session_response = client.start_code_interpreter_session(
codeInterpreterIdentifier="aws.codeinterpreter.v1",
name="my-code-session",
sessionTimeoutSeconds=900
)
session_id = session_response["sessionId"]
print(f"Started session: {session_id}\\n")
try:
# Execute code in the session
execute_response = client.invoke_code_interpreter(
codeInterpreterIdentifier="aws.codeinterpreter.v1",
sessionId=session_id,
name="executeCode",
arguments={
"language": "python",
"code": code_to_execute
}
)
# Extract and print the text output from the stream
for event in execute_response['stream']:
if 'result' in event:
result = event['result']
if 'content' in result:
for content_item in result['content']:
if content_item['type'] == 'text':
print(content_item['text'])
finally:
# Stop the session when done
client.stop_code_interpreter_session(
codeInterpreterIdentifier="aws.codeinterpreter.v1",
sessionId=session_id
)
print(f"\\nStopped session: {session_id}")
This code:
- Creates a boto3 client for the bedrock-agentcore service
- Starts a Code Interpreter session with a 900-second timeout
- Executes Python code using the session ID
- Parses the streaming response to extract text output
- Properly stops the session to release resources
The boto3 approach requires explicit session management. You must call start_code_interpreter_session
before executing code and stop_code_interpreter_session
when finished.
Run the script:
python direct_code_execution_boto3.py
Expected Output: You should see Hello World!!!
printed as the result of the code execution, along with the session ID information.